Circumventing the blood-brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain.

J Control Release

Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada. Electronic address:

Published: October 2015

Drug delivery to the central nervous system is limited by the blood-brain barrier, which can be circumvented by local delivery. In applications of stroke therapy, for example, stimulation of endogenous neural stem/progenitor cells (NSPCs) by cyclosporin A (CsA) is promising. However, current strategies rely on high systemic drug doses to achieve small amounts of CsA in the brain tissue, resulting in systemic toxicity and undesirable global immunosuppression. Herein we describe the efficacy of local CsA delivery to the stroke-injured rat brain using an epi-cortically injected hydrogel composed of hyaluronan and methylcellulose (HAMC). CsA was encapsulated in poly(lactic-co-glycolic acid) microparticles dispersed in HAMC, allowing for its sustained release over 14days in vivo. Tissue penetration was sufficient to provide sustained CsA delivery to the sub-cortical NSPC niche. In comparison to systemic delivery using an osmotic minipump, HAMC achieved higher CsA concentrations in the brain while significantly reducing drug exposure in other organs. HAMC alone was beneficial in the stroke-injured rat brain, significantly reducing the stroke infarct volume relative to untreated stroke-injured controls. The combination of HAMC and local CsA release increased the number of proliferating cells in the lateral ventricles - the NSPC niche in the adult brain. Thus, we demonstrate a superior method of drug delivery to the rat brain that provides dual benefits of tissue protection and endogenous NSPC stimulation after stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2015.07.023DOI Listing

Publication Analysis

Top Keywords

rat brain
16
stroke-injured rat
12
blood-brain barrier
8
local delivery
8
drug delivery
8
local csa
8
csa delivery
8
nspc niche
8
brain reducing
8
delivery
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!