AI Article Synopsis

  • The study reviewed existing literature on the adhesion of materials in cavities prepared using erbium lasers, focusing on how different conditions of the dentin substrate impact bond strength.
  • Advances in adhesive restorative techniques support a minimally invasive approach in dentistry, reducing the need to remove healthy dentin while utilizing laser technology for caries removal and cavity preparation.
  • A lack of standard protocols and variability in studies made it difficult to establish definitive guidelines, highlighting the need for further research to improve bond strength and consistency in laser-assisted dental treatments.

Article Abstract

Objective: The aim of the present study was to conduct a review of the literature about adhesion on erbium laser prepared cavities, related to the specific conditions of the irradiated dentin substrate and the effects on bond strength values.

Background Data: Advances in adhesive restorative techniques significantly influenced modern restorative dentistry. The concept of "minimally invasive dentistry" aims to perform more conservative treatment of cavities in which the removal of sound dentin is no longer necessary. This approach, which relies on the concept of adhesion of restorative materials to the mineralized dental tissues, is considered to be a contemporary outcome in dentistry. Similarly, laser technology in restorative dentistry opened new possibilities and strategies as alternatives to conventional treatment. Considering the clinical aspects of the use of erbium lasers for caries removal, cavity preparations, and substrate conditioning, treatment with lasers can be considered to be an efficient technique with wide acceptance by patients.

Methods: Computerized and manual searches were conducted for studies through 2015 that addressed the topic.

Results: According to the literature, there is no defined standard protocol concerning the information that articles must provide, making a definitive protocol very difficult to establish. Data varied from the type of adhesive and resin composite used, substrate, and parameters (power, energy density, pulse duration, irradiation time, distance, cooling system) to the bond strength test methodology used.

Conclusions: Further studies are necessary in order to define a standard protocol with positive results and higher bond strength values when using erbium lasers. Detailed information concerning laser parameters should be implemented. Also, longitudinal clinical studies should be developed in the search for new parameters that behave favorably in the irradiated substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1089/pho.2015.3892DOI Listing

Publication Analysis

Top Keywords

bond strength
12
review literature
8
restorative dentistry
8
erbium lasers
8
standard protocol
8
dental adhesion
4
adhesion erbium-lased
4
erbium-lased tooth
4
tooth structure
4
structure review
4

Similar Publications

We report a direct application of the molecular tailoring approach-based (MTA-based) method to calculate the individual hydrogen bond (HB) energy in molecular crystal. For this purpose, molecular crystals of nitromalonamide (NMA) and salicylic acid (SA) were taken as test cases. Notably, doing a correlated computation using a large molecular crystal structure is difficult.

View Article and Find Full Text PDF

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

In response to the rotary ploughing equipment in the stubble land to implement protective operations, the stubble is large in number and strong in toughness, not easy to crush, resulting in rotary ploughing equipment to produce entanglement and increased resistance to rotary ploughing and other issues. In this study, researchers designed a bionic rotary tillage blade (B-RTB) based on the bionic structural equations of the Marmota claw. A straw-soil complex shear performance test was conducted to investigate the effect of straw on soil shear strength.

View Article and Find Full Text PDF

Statement Of Problem: Comprehensive data are needed on the performance of chemically activated, chairside hard reline materials when used with computer-aided design and computer-aided manufacturing (CAD-CAM) milled polymethyl methacrylate (PMMA) denture bases and conventionally processed bases. This lack of data affects decisions regarding the chairside reline material to be used for improving the fit and retention of relined complete dentures.

Purpose: The purpose of this in vitro study was to evaluate and compare the shear bond strength (SBS) of 3 chemically activated, chairside hard reline materials on CAD-CAM milled and conventional heat-polymerized PMMA denture bases.

View Article and Find Full Text PDF

An Automated Workflow to Discover the Structure-Stability Relations for Radiation Hard Molecular Semiconductors.

J Am Chem Soc

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.

Emerging photovoltaics for outer space applications are one of the many examples where radiation hard molecular semiconductors are essential. However, due to a lack of general design principles, their resilience against extra-terrestrial high-energy radiation can currently not be predicted. In this work, the discovery of radiation hard materials is accelerated by combining the strengths of high-throughput, lab automation and machine learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!