Date palm is an important crop, especially in the hot-arid regions of the world. Date palm fruits have high nutritional and therapeutic value and possess significant antibacterial and antifungal properties. In this study, we performed bioactivity analyses and metabolic profiling of date fruits of 12 cultivars from Saudi Arabia to assess their nutritional value. Our results showed that the date extracts from different cultivars have different free radical scavenging and anti-lipid peroxidation activities. Moreover, the cultivars showed significant differences in their chemical composition, e.g., the phenolic content (10.4-22.1 mg/100 g DW), amino acids (37-108 μmol·g-1 FW) and minerals (237-969 mg/100 g DW). Principal component analysis (PCA) showed a clear separation of the cultivars into four different groups. The first group consisted of the Sokary, Nabtit Ali cultivars, the second group of Khlas Al Kharj, Khla Al Qassim, Mabroom, Khlas Al Ahsa, the third group of Khals Elshiokh, Nabot Saif, Khodry, and the fourth group consisted of Ajwa Al Madinah, Saffawy, Rashodia, cultivars. Hierarchical cluster analysis (HCA) revealed clustering of date cultivars into two groups. The first cluster consisted of the Sokary, Rashodia and Nabtit Ali cultivars, and the second cluster contained all the other tested cultivars. These results indicate that date fruits have high nutritive value, and different cultivars have different chemical composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331958PMC
http://dx.doi.org/10.3390/molecules200813620DOI Listing

Publication Analysis

Top Keywords

cultivars
11
cultivars saudi
8
saudi arabia
8
arabia assess
8
assess nutritional
8
fruits high
8
chemical composition
8
cultivars groups
8
group consisted
8
consisted sokary
8

Similar Publications

Cold stress during the seedling stage significantly threatens rice ( L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage.

View Article and Find Full Text PDF

Advancements in high-throughput sequencing and associated bioinformatics methods have significantly expanded the RNA virus repertoire, including novel viruses with highly divergent genomes encoding "orphan" proteins that apparently lack homologous sequences. This absence of homologs in routine sequence similarity search complicates their taxonomic classification and raises a fundamental question: Do these orphan viral genomes represent viruses? In 2022, an orphan viral genome encoding a large polyprotein was identified in alfalfa () and thrips (), and named Snake River alfalfa virus (SRAV). SRAV was initially proposed as an uncommon flavi-like virus identified in a plant host distantly related to family .

View Article and Find Full Text PDF

Discovery of a locus associated with susceptibility to esca in grapevine.

Plant Dis

January 2025

INRAE Grand Est-Colmar, 28 rue de Herrlisheim, Colmar, France, 68000;

Esca is the most destructive and predominant of grapevine trunk disease. The chronic infections and vine mortality caused by esca syndrome leads to huge economic losses and threatens the sustainability of vineyards worldwide. Esca is caused by numerous wood-decay and wood-decay associated fungi, but its full etiology remains unclear due to the grapevine trunk disease complex, making effective control methods challenging.

View Article and Find Full Text PDF

Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!