A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520594 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134297 | PLOS |
Life Sci Alliance
March 2025
https://ror.org/0168r3w48 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
Large multiprotein machines are central to many biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Computer Science, University of Haifa, Haifa 3303221, Israel.
Selective pressure acts on the codon use, optimizing multiple, overlapping signals that are only partially understood. We trained AI models to predict codons given their amino acid sequence in the eukaryotes and and the bacteria and to study the extent to which we can learn patterns in naturally occurring codons to improve predictions. We trained our models on a subset of the proteins and evaluated their predictions on large, separate sets of proteins of varying lengths and expression levels.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
This study explores the design, synthesis, and evaluation of a novel series of isobenzofuran-based imidazo[2,1-b][1,3,4]thiadiazole derivatives, targeting their antimicrobial and anticancer properties. These compounds integrate the pharmacologically significant 1,3,4-thiadiazole and imidazole moieties, which are known for their potential in drug development, although imidazo[2,1-b][1,3,4]thiadiazole-based drugs are not yet available on the market. Therefore, the aim of this study is to develop novel derivatives that could serve as promising candidates for future therapeutic applications.
View Article and Find Full Text PDFSci Rep
December 2024
Bioresource and Environmental Security, Sandia National Laboratories, P. O. Box 969, Livermore, CA, 94551-0969, USA.
Global health is affected by viral, bacterial, and fungal infections that cause chronic and often fatal diseases. Identifying novel antimicrobials through innovative methods that are active against human pathogens will create a new, necessary pipeline for chemical discovery and therapeutic development. Our goal was to determine whether algal production systems represent fertile ground for discovery of antibiotics and antifungals.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!