Novel Abetalipoproteinemia Missense Mutation Highlights the Importance of the N-Terminal β-Barrel in Microsomal Triglyceride Transfer Protein Function.

Circ Cardiovasc Genet

From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.).

Published: October 2015

Background: The use of microsomal triglyceride transfer protein (MTP) inhibitors is limited to severe hyperlipidemias because of associated hepatosteatosis and gastrointestinal adverse effects. Comprehensive knowledge about the structure-function of MTP might help design new molecules that avoid steatosis. Characterization of mutations in MTP causing abetalipoproteinemia has revealed that the central α-helical and C-terminal β-sheet domains are important for protein disulfide isomerase binding and lipid transfer activity. Our aim was to identify and characterize mutations in the N-terminal domain to understand its function.

Methods And Results: We identified a novel missense mutation (D169V) in a 4-month-old Turkish male child with severe signs of abetalipoproteinemia. To study the effect of this mutation on MTP function, we created mutants via site-directed mutagenesis. Although D169V was expressed in the endoplasmic reticulum and interacted with apolipoprotein B (apoB) 17, it was unable to bind protein disulfide isomerase, transfer lipids, and support apoB secretion. Computational modeling suggested that D169 could form an internal salt bridge with K187 and K189. Mutagenesis of these lysines to leucines abolished protein disulfide isomerase heterodimerization, lipid transfer, and apoB secretion, without affecting apoB17 binding. Furthermore, mutants with preserved charges (D169E, K187R, and K189R) rescued these activities.

Conclusions: D169V is detrimental because it disrupts an internal salt bridge leading to loss of protein disulfide isomerase binding and lipid transfer activities; however, it does not affect apoB binding. Thus, the N-terminal domain of MTP is also important for its lipid transfer activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618089PMC
http://dx.doi.org/10.1161/CIRCGENETICS.115.001106DOI Listing

Publication Analysis

Top Keywords

protein disulfide
16
disulfide isomerase
16
lipid transfer
16
missense mutation
8
microsomal triglyceride
8
triglyceride transfer
8
transfer protein
8
isomerase binding
8
binding lipid
8
transfer activity
8

Similar Publications

In-depth site-specific glycoproteomic analysis reveals ER-resident protein PDI regulating wheat yellow mosaic virus infection.

Int J Biol Macromol

December 2024

Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China. Electronic address:

N-glycosylation is crucial in the process of wheat yellow mosaic virus (WYMV) infection, but changes in site-specific N-glycosylation of proteins during WYMV infection have not been well studied. In this study, we employed an intact glycopeptide approach to analyze mock- and WYMV-infected wheat plants. We found that most glycoproteins have N-glycans containing paucimannose or complex/hybrid chains.

View Article and Find Full Text PDF

Background: Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC.

View Article and Find Full Text PDF

Background/objectives: Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies.

View Article and Find Full Text PDF

Aim: There remain limited therapies to treat thyroid eye disease (TED) orbital fibrosis, highlighting the urgency to develop novel targets. Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts are important pathogenetic factor of TED. Endoplasmic reticulum (ER) stress may play a role in TED pathogenesis since it has been linked to liver, kidney, heart and lung fibrotic remodelling.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!