Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that prevents protein degradation by removing polyubiquitin chains from its substrates. It regulates the stability of a number of human transcription factors and tumor suppressors and plays a critical role in the development of several types of cancer, including prostate and small cell lung cancer. In addition, human USP7 is targeted by several viruses of the Herpesviridae family and is required for effective herpesvirus infection. The USP7 C-terminal region (C-USP7) contains five ubiquitin-like domains (UBL1-5) that interact with several USP7 substrates. Although structures of the USP7 C terminus bound to its substrates could provide vital information for understanding USP7 substrate specificity, no such data has been available to date. In this work we have demonstrated that the USP7 ubiquitin-like domains can be studied in isolation by solution NMR spectroscopy, and we have determined the structure of the UBL1 domain. Furthermore, we have employed NMR and viral plaque assays to probe the interaction between the C-USP7 and HSV-1 immediate-early protein ICP0 (infected cell protein 0), which is essential for efficient lytic infection and virus reactivation from latency. We have shown that depletion of the USP7 in HFF-1 cells negatively affects the efficiency of HSV-1 lytic infection. We have also found that USP7 directly binds ICP0 via its C-terminal UBL1-2 domains and mapped the USP7-binding site for ICP0. Therefore, this study represents a first step toward understanding the molecular mechanism of C-USP7 specificity toward its substrates and may provide the basis for future development of novel antiviral and anticancer therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645603 | PMC |
http://dx.doi.org/10.1074/jbc.M115.664805 | DOI Listing |
Nucleic Acids Res
January 2025
Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:
Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.
View Article and Find Full Text PDFImmunotherapy has elicited significant improvements in outcomes for patients with several tumor types. However, the immunosuppressive microenvironment in glioblastoma restricts the therapeutic efficacy of immune checkpoint blockade (ICB). In this study, we investigated which components of the immune microenvironment contribute to ICB failure in glioblastoma to elucidate the underlying causes of immunotherapeutic resistance.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Peptide Therapeutics, Genentech, South San Francisco, CA 94080, USA.
mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG.
View Article and Find Full Text PDFSci Rep
January 2025
International Joint Research Laboratory for Perception Data Intelligent Processing of Henan, Anyang Normal University, Anyang, 455000, China.
Deconvoluting drug targets is crucial in modern drug development, yet both traditional and artificial intelligence (AI)-driven methods face challenges in terms of completeness, accuracy, and efficiency. Identifying drug targets, especially within complex systems such as the p53 pathway, remains a formidable task. The regulation of this pathway by myriad stress signals and regulatory elements adds layers of complexity to the discovery of effective p53 pathway activators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!