The 1/1 diacetyl/water complex is of atmospheric relevance. Previous experimental and theoretical studies have focused on two isomeric forms, and geometry optimizations were carried out on them. Herein, we propose a six-step methodological approach based on topological properties to search for and characterize all of the isomeric forms of the 1/1 noncovalent diacetyl/water complex: (1) a molecular electrostatic potential (MESP) study to get an overview of the V min and V max regions on the molecular surfaces of the separate molecules (diacetyl and water); (2) a topological (QTAIM and ELF) study allowing thorough characterization of the electron densities (QTAIM) and irreducible ELF basins of the separate molecules; (3) full optimization of the predicted structures based on the interaction between complementary reaction sites; (4) energetic characterization based on a symmetry-adapted perturbation theory (SAPT) analysis; (5) topological characterization of the optimized complexes; (6) analysis of the complexes in terms of orbital overlaps (natural bond orbitals, NBO analysis). Using this approach, in addition to achieving the topological characterization of the two isomeric forms already reported, a third possible isomer was identified and characterized. Graphical Abstract Topological tools to study monohydrated complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-015-2751-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!