Aim: The interaction between TNF-like weak inducer of apoptosis (TWEAK, Tnfsf12) and the receptor, fibroblast growth factor-inducible 14 (Fn14), regulates vascular damage through different mechanisms, including inflammation. Oxidative stress plays a major role in inflammation and the development of atherosclerosis, but the relationship between TWEAK and oxidative stress is, however, poorly understood.

Methods And Results: In this study, we found that TWEAK and Fn14 are co-localized with the NADPH subunits, p22phox and Nox2, in human advanced atherosclerotic plaques. Using primary human macrophages and a murine macrophage cell line, we demonstrate that TWEAK promotes ROS production and enhances NADPH oxidase activity. Hence, we show a direct involvement of the TWEAK-Fn14 axis in oxidative stress, as genetic silencing of Fn14 or Nox2 abrogates the TWEAK-induced ROS production. Furthermore, our results point at Rac1 as an upstream mediator of TWEAK during oxidative stress. Finally, using an in vivo murine model we confirmed the major role of TWEAK in oxidative stress, as genetic silencing of Tnfsf12 in an ApoE(-/-) background reduces the number of DHE and 8-hydroxydeoxyguanosine-positive macrophages by 50%.

Conclusions: Our results suggest that TWEAK regulates vascular damage by stimulating ROS production in an Nox2-dependent manner. These new insights into the TWEAK/Fn14 axis underline their potential use as therapeutic targets in atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvv204DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
tweak oxidative
12
ros production
12
nadph oxidase
8
regulates vascular
8
vascular damage
8
major role
8
stress genetic
8
genetic silencing
8
tweak
7

Similar Publications

Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the pro-gressive loss of dopaminergic neurons in the substantia nigra, leading to motor dysfunction and non-motor symptoms. Current treatments primarily offer symptomatic relief without halt-ing disease progression. This has driven the exploration of natural compounds with neuropro-tective properties.

View Article and Find Full Text PDF

Background: Postmenopausal women (PMW) who complete menopause at a late age (55+ years) have lower cardiovascular disease risk than PMW who complete menopause at a normal age (45-54 years). However, the influence of late-onset menopause on vascular endothelial dysfunction is unknown. Moreover, the mechanisms by which a later age at menopause may modulate endothelial function remain to be determined.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) plays a critical role in the regulation and progress of autophagy, an essential recycling process that influences cellular homeostasis and stress response. Autophagy is characterized by the formation of intracellular vesicles analogous to recycle "bags" called autophagosomes, which fuse with lysosomes to form autolysosomes, eventually ending up as lysosomes. We have developed two novel autophagic vesicle-targeted peptide-based sensors, for HO and for pH, to simultaneously track HO and pH dynamics within autophagic vesicles as autophagy advances.

View Article and Find Full Text PDF

L. fruits and leaf extracts have a broad range of immunomodulatory, anti-inflammatory, and antioxidant effects; however, their effects on cardiac protection have not been investigated. The study aims to test the biological activity of L.

View Article and Find Full Text PDF

Objective: To investigate the association between Oxidative Balance Score (OBS) and glaucoma risk.

Methods: Using data from the National Health and Nutrition Examination Survey (2005-2008), we analyzed 2,615 participants aged ≥40 years. OBS was calculated from 15 antioxidant and 5 pro-oxidant components, including dietary nutrients and lifestyle factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!