Background: Uncontrolled expression of a certain mitochondrial gene often causes cytoplasmic male sterility (CMS) in plants. This phenotype is prevented by the presence of a fertility restorer (Rf) gene in the nuclear genome. Such CMS/Rf systems have been successfully used for breedings of F1 hybrid cultivars. In rice, approximately 99% of F1 hybrid cultivars have been developed using a wild abortive type of CMS (WA-CMS) and its Rf genes. Recently, a newly identified mitochondrial gene, orf352, was reported as a WA-CMS-causing gene.
Findings: We cloned and functionally characterized Rf4, a major Rf gene for WA-CMS. We revealed that Rf4 encoded a pentatricopeptide repeat-containing protein and reduced the orf352-containing transcripts, thereby restoring pollen fertility.
Conclusions: Through a map-based cloning, we have independently identified an allele of a recently reported Rf4 gene and demonstrated that the fertility restoration is controlled sporophytically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884050 | PMC |
http://dx.doi.org/10.1186/s12284-014-0028-z | DOI Listing |
Front Genet
January 2025
National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.
The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France.
Cytoplasmic male sterility (CMS) originates from a mito-nuclear conflict where mitochondrial genes induce male sterility and nuclear genes restore male fertility in hermaphrodites. The first observation of CMS in animals was reported recently in the freshwater snail where it is associated with two extremes divergent mitotypes D and K. The D individuals are male-steriles while male fertility is restored by nuclear genes in K and are found mixed with the most common male-fertile N mitotype in natural populations (i.
View Article and Find Full Text PDFPlant Biotechnol J
February 2025
Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India.
Male sterility is an important agronomical trait in self-pollinating plants for producing cost-effective F1 hybrids to harness the heterosis. Still, large-scale development and maintenance of male sterile lines and restoring fertility in F1 hybrids pose significant challenges in plant hybrid breeding. Cotton is a self-pollinating crop and exhibits strong hybrid vigor.
View Article and Find Full Text PDFHeliyon
November 2024
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 502324, Patancheru, Telangana, India.
Sorghum hybrids demonstrated increased productivity and helped offset the decreasing cultivated areas, particularly in Asia. The diversity in cytoplasmic male sterility systems, stability of restorers and high yield of sorghum is an important factor for achieving food security and sustainability. In sorghum, hybrid production has been limited to A1 cytoplasmic source to date, primarily due to limited number of restorers on other cytoplasmic sources.
View Article and Find Full Text PDFHortic Res
October 2024
Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!