Antiviral Phosphorodiamidate Morpholino Oligomers are Protective against Chikungunya Virus Infection on Cell-based and Murine Models.

Sci Rep

Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore.

Published: July 2015

Chikungunya virus (CHIKV) infection in human is associated with debilitating and persistent arthralgia and arthritis. Currently, there is no specific vaccine or effective antiviral available. Anti-CHIKV Phosphorodiamidate Morpholino Oligomer (CPMO) was evaluated for its antiviral efficacy and cytotoxcity in human cells and neonate murine model. Two CPMOs were designed to block translation initiation of a highly conserved sequence in CHIKV non-structural and structural polyprotein, respectively. Pre-treatment of HeLa cells with CPMO1 significantly suppressed CHIKV titre, CHIKV E2 protein expression and prevented CHIKV-induced CPE. CPMO1 activity was also CHIKV-specific as shown by the lack of cross-reactivity against SINV or DENV replication. When administered prophylactically in neonate mice, 15 μg/g CPMO1v conferred 100% survival against CHIKV disease. In parallel, these mice demonstrated significant reduction in viremia and viral load in various tissues. Immunohistological examination of skeletal muscles and liver of CPMO1v-treated mice also showed healthy tissue morphology, in contrast to evident manifestation of CHIKV pathogenesis in PBS- or scrambled sCPMO1v-treated groups. Taken together, our findings highlight for the first time that CPMO1v has strong protective effect against CHIKV infection. This warrants future development of morpholino as an alternative antiviral agent to address CHIKV infection in clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4649900PMC
http://dx.doi.org/10.1038/srep12727DOI Listing

Publication Analysis

Top Keywords

chikv infection
12
phosphorodiamidate morpholino
8
chikungunya virus
8
chikv
8
antiviral
4
antiviral phosphorodiamidate
4
morpholino oligomers
4
oligomers protective
4
protective chikungunya
4
infection
4

Similar Publications

Chikungunya virus infection often manifests as an acute, self-limiting febrile illness, with arthralgia and musculoskeletal symptoms being the most commonly reported. Arthralgia can persist for months or even years, and approximately 50% of cases progress to chronic conditions. However, recent outbreaks have revealed a rising number of severe cases and fatalities.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is primarily associated with non-human-primates (NHPs) in Africa, which also infect humans. Since its introduction to Brazil in 2014, CHIKV has predominantly thrived in urban cycles, involving Aedes aegypti mosquitoes. Limited knowledge exists regarding CHIKV occurrence and implications in rural and sylvatic cycles where neotropical NHPs are potential hosts, from which we highlight Leontopithecus chrysomelas (Kuhl, 1820), the golden-headed lion tamarin (GHLT), an endangered species endemic to the Atlantic Forest (AF) in Southern Bahia State, Brazil.

View Article and Find Full Text PDF

Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy.

Nanomedicine (Lond)

January 2025

Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia.

Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections.

View Article and Find Full Text PDF

Unlabelled: Climate change is predicted to increase the spread of mosquito-borne viruses, but genetic mechanisms underlying the influence of environmental variation on the ability of insect vectors to transmit human pathogens is unknown. In response to a changing climate, mosquitoes will experience longer periods of drought. An important physiological response to dry environments is the protection against dehydration, here defined as desiccation tolerance.

View Article and Find Full Text PDF

Millions of people are annually infected by mosquito-transmitted arboviruses including dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV) and chikungunya virus (CHIKV). Insect-specific flaviviruses (ISFs), which only infect mosquitoes and cannot replicate in vertebrates, can offers a potential one health strategy to block the transmission of arboviruses by reducing the mosquito's susceptibility for subsequent arbovirus infections through superinfection exclusion (SIE),. Most SIE studies focus on acute ISF infections in RNAi-deficient C6/36 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!