Background: Dengue is a viral disease whose clinical spectrum ranges from unapparent to severe forms and fatal outcomes. Although dengue death is 99% avoidable, every year around 20,000 deaths are estimated to occur in more than 100 countries. We consider that, along with biological factors, social determinants of health (SDHs) are related to dengue deaths as well.
Methods: A scoping review was conducted to explore what has been written about the role of SDHs in dengue mortality. The inclusion criteria were that documents (grey or peer-reviewed) had to include information about dengue fatal cases in humans and be published between 1997 and 2013 and written in English, Spanish, Portuguese or French. The search was conducted using a set of key words related to dengue mortality in several electronic databases: PubMed, LILACS, COCHRANE, Scielo, Science Direct, WHOLIS, OpenGrey, OpenSingle and Google Scholar. Information on SDHs was categorized under individual, social and environmental, and health systems dimensions. A summative content analysis using QDA Miner was conducted to assess the frequency of information on SDHs and its contextual meaning in the reviewed literature. The role of each SDH in dengue mortality was assessed using content analysis results.
Results: From a total of 971 documents retrieved, 78 met the criteria. Those documents were published in the Americas region (50.0%), Asia (38.4%), Europe (9.0%) and Africa (2.6%). The described SDHs related to dengue deaths included, in the individual dimension: age, ethnicity, education, type of infection and immunological status; and in the social dimension: poverty and care-seeking behavior. The health systems dimension included access, opportunity, and quality of care, as well as health staff knowledge. Ethnicity was considered a determinant that depends on cultural and socioeconomic conditions.
Conclusions: Along with biological factors, there are several SDHs related to dengue mortality. However, only a few of these have been systematically analyzed, suggesting the need for more studies on this subject to inform the design and implementation of sustainable interventions to decrease dengue mortality. These findings nevertheless provide a better understanding of the non-biological factors involved in dengue mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520151 | PMC |
http://dx.doi.org/10.1186/s12879-015-1058-x | DOI Listing |
Parasitol Int
January 2025
Department of Fundamental Chemistry, Center for Natural Sciences, Federal University of Pernambuco, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, 50740-560 Recife, Pernambuco, Brazil. Electronic address:
Dengue is a viral disease present in many regions of the world. Aedes aegypti transmits it, and the most effective way to eliminate the mosquito is during the larval stage. Seaweeds possess metabolites with insecticidal properties, making them potential sources of new larvicides and viable alternatives to synthetic products used to control insect vectors of diseases.
View Article and Find Full Text PDFGerms
September 2024
MD, MPH, PhD, Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Kaliurang Street KM 14.5 Yogyakarta 55584, Indonesia.
Introduction: Dengue infection poses a serious threat to global public health, including Indonesia. The rapid spread and significant economic impact are crucial concerns for control efforts. Investigating risk factors of dengue virus infection is necessary to formulate effective strategies, particularly at the household level.
View Article and Find Full Text PDFBull Entomol Res
January 2025
Environmental Sciences Graduate Program, Community University of the Chapecó Region (Unochapecó), Chapecó, SC, Brazil.
Mosquitoes, particularly , pose significant public health risks by transmitting diseases like dengue, zika and chikungunya. var. (BTI) is a crucial larvicide targeting mosquitoes while sparing other organisms and the environment.
View Article and Find Full Text PDFEpidemiol Infect
January 2025
School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, Staffordshire, UK.
In 2023, Bangladesh experienced its largest and deadliest outbreak of the Dengue virus (DENV), reporting the highest-ever recorded annual cases and deaths. Historically, most of the cases were recorded in the capital city, Dhaka. We aimed to characterize the geographical transmission of DENV in Bangladesh.
View Article and Find Full Text PDFJ Exp Biol
January 2025
School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!