Upon moisture uptake, dry cellular cereals and snacks loose their brittleness and become soggy. This familiar phenomenon is manifested in smoothing their compressive force-displacement curves. These curves' degree of jaggedness, expressed by their apparent fractal dimension, can serve as an instrumental measure of the particles' crunchiness. The relationship between the apparent fractal dimension and moisture content or water activity has a characteristic sigmoid shape. The relationship between the sensorily perceived crunchiness and moisture also has a sigmoid shape whose inflection point lies at about the same location. The transition between the brittle and soggy states, however, appears sharper in the apparent fractal dimension compared with moisture plot. Less familiar is the observation that at moderate levels of moisture content, while the particles' crunchiness is being lost, their stiffness actually rises, a phenomenon that can be dubbed "moisture toughening." We show this phenomenon in commercial Peanut Butter Crunch® (sweet starch-based cereal), Cheese Balls (salty starch-based snack), and Pork Rind also known as "Chicharon" (salty deep-fried pork skin), 3 crunchy foods that have very different chemical composition. We also show that in the first 2 foods, moisture toughening was perceived sensorily as increased "hardness." We have concluded that the partial plasticization, which caused the brittleness loss, also inhibited failure propagation, which allowed the solid matrix to sustain higher stresses. This can explain other published reports of the phenomenon in different foods and model systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.12971 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
Mini-emulsion and nanoprecipitation techniques relied on large amounts of surfactants, and unresolved miscibility issues of heterojunction materials limited their efficiency and applicability in the past. Through our molecular design and developed surfactant-free precipitation method, we successfully fabricated the best miscible bulk-heterojunction-particles (BHJP) ever achieved, using donor () and acceptor () polymers. The structural similarity ensures optimal miscibility, as supported by the interaction parameter of the / blend is positioned very close to the binodal curve.
View Article and Find Full Text PDFExp Eye Res
January 2025
Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland. Electronic address:
The major obstacle in the commercialisation and clinical translation of tissue engineered medicines is the required for the development of implantable tissue surrogates prolonged in vitro culture. Macromolecular crowding (MMC) enhances and accelerates extracellular matrix (ECM) deposition, thus offering an opportunity to bridge the gap between research and development in tissue engineered substitutes. However, the optimal MMC agent is still elusive.
View Article and Find Full Text PDFChaos
November 2024
Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
Motivated by the well-known fractal packing of chromatin, we study the Rouse-type dynamics of elastic fractal networks with embedded, stochastically driven, active force monopoles and force dipoles that are temporally correlated. We compute, analytically-using a general theoretical framework-and via Langevin dynamics simulations, the mean square displacement (MSD) of a network bead. Following a short-time superdiffusive behavior, force monopoles yield anomalous subdiffusion with an exponent identical to that of the thermal system.
View Article and Find Full Text PDFSci Rep
August 2024
MSk Laboratory, Sir Michael Uren Hub, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 7ED, UK.
Gestational growth and development of bone is an understudied process compared to soft tissues and has implications for lifelong health. This study investigated growth and development of human fetal limb bone trabecular architecture using 3D digital histomorphometry of microcomputed tomography data from the femora and humeri of 35 skeletons (17 female and 18 male) with gestational ages between 4 and 9 months. Ontogenetic data revealed: (i) fetal trabecular architecture is similar between sexes; (ii) the proximal femoral metaphysis is physically larger, with thicker trabeculae and greater bone volume fraction relative to the humerus, but other aspects of trabecular architecture are similar between the bones; (iii) between 4 and 9 months gestation there is no apparent sexual or limb dimorphism in patterns of growth, but the size of the humerus and femur diverges early in development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2024
Department of Biomedical Engineering, Duke University, Durham, NC 27708.
In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross-over between two and four at contour lengths on the order of 30 kilo-base pairs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!