Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionbc412vr42v1nttmcvb910ee4fmums84g): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The event-based model constructs a discrete picture of disease progression from cross-sectional data sets, with each event corresponding to a new biomarker becoming abnormal. However, it relies on the assumption that all subjects follow a single event sequence. This is a major simplification for sporadic disease data sets, which are highly heterogeneous, include distinct subgroups, and contain significant proportions of outliers. In this work we relax this assumption by considering two extensions to the event-based model: a generalised Mallows model, which allows subjects to deviate from the main event sequence, and a Dirichlet process mixture of generalised Mallows models, which models clusters of subjects that follow different event sequences, each of which has a corresponding variance. We develop a Gibbs sampling technique to infer the parameters of the two models from multi-modal biomarker data sets. We apply our technique to data from the Alzheimer's Disease Neuroimaging Initiative to determine the sequence in which brain regions become abnormal in sporadic Alzheimer's disease, as well as the heterogeneity of that sequence in the cohort. We find that the generalised Mallows model estimates a larger variation in the event sequence across subjects than the original event-based model. Fitting a Dirichlet process model detects three subgroups of the population with different event sequences. The Gibbs sampler additionally provides an estimate of the uncertainty in each of the model parameters, for example an individual's latent disease stage and cluster assignment. The distributions and mixtures of sequences that this new family of models introduces offer better characterisation of disease progression of heterogeneous populations, new insight into disease mechanisms, and have the potential for enhanced disease stratification and differential diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-19992-4_56 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!