Hydrogen-bonding dramatically modulates the gene transfection efficacy of surface-engineered dendrimers.

Biomater Sci

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China.

Published: March 2015

Dendrimers have shown great promise in the design of efficient gene vectors. However, high transfection efficacy is usually associated with serious cytotoxicity for these cationic polymers. Here, we report a facile strategy to prepare surface-engineered dendrimers with a dramatic transfection efficacy and reduced cytotoxicity. Surface-engineered dendrimers with multiple hydrogen bonding ligands such as guanamine and nucleobase derivatives show superior efficacy and low cytotoxicity on commonly used cells as well as 3D tumor spheroids to representative transfection reagents such as Lipofectamine 2000. Complementary multiple hydrogen bonding interactions between the modified ligands and DNA nucleobases play essential roles in efficient gene transfection. The hydrogen-bond modulation strategy represents a promising tool in the design of highly efficient and less cytotoxic gene materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4bm00335gDOI Listing

Publication Analysis

Top Keywords

transfection efficacy
12
surface-engineered dendrimers
12
gene transfection
8
efficient gene
8
multiple hydrogen
8
hydrogen bonding
8
transfection
5
hydrogen-bonding dramatically
4
dramatically modulates
4
gene
4

Similar Publications

Lung cancer represents a significant global health burden, with non-small cell lung cancer (NSCLC) being the most common subtype. The current standard of care for NSCLC has limited efficacy, highlighting the necessity for innovative treatment options. Lidocaine, traditionally recognized as a local anesthetic, has emerged as a compound with potential antitumor and anti-inflammatory capabilities.

View Article and Find Full Text PDF

Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate (AEC) syndrome is a rare genetic disorder caused by mutations in the TP63 gene, which encodes a transcription factor essential for epidermal gene expression. A key feature of AEC syndrome is chronic skin erosion, for which no effective treatment currently exists. Our previous studies demonstrated that mutations associated with AEC syndrome lead to p63 protein misfolding and aggregation, exerting a dominant-negative effect.

View Article and Find Full Text PDF

Production of biologically active recombinant salmon calcitonin in Escherichia coli and fish cell line.

Arch Microbiol

January 2025

Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India.

Salmon calcitonin is a small peptide hormone synthesised and released by a specialised gland called ultimobranchial gland in fish. This hormone has been used to treat osteoporosis for over 50 years. The aim of this study was to compare the efficacy of five repeats of salmon calcitonin (5sCT) produced in two different hosts (bacteria and fish cell line).

View Article and Find Full Text PDF

Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are the preeminent non-viral drug delivery vehicle for mRNA-based therapies. Immense effort has been placed on optimizing the ionizable lipid (IL) structure, which contains an amine core conjugated to lipid tails, as small molecular adjustments can result in substantial changes in the overall efficacy of the resulting LNPs. However, despite some advancements, a major barrier for LNP delivery is endosomal escape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!