Cyanate as an energy source for nitrifiers.

Nature

Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.

Published: August 2015

Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539577PMC
http://dx.doi.org/10.1038/nature14856DOI Listing

Publication Analysis

Top Keywords

aerobic growth
8
nitrososphaera gargensis
8
cyanate
5
cyanate energy
4
energy source
4
source nitrifiers
4
nitrifiers ammonia-
4
ammonia- nitrite-oxidizing
4
nitrite-oxidizing microorganisms
4
microorganisms collectively
4

Similar Publications

Individuals with intellectual disabilities (ID) often exhibit lower levels of physical fitness compared to the general population, including reduced strength, endurance, flexibility, and coordination. Dynamic neuromuscular stabilization (DNS) training can potentially improve the performance of adults with ID caused by weak motor skills due to a lack of desirable nerve growth during childhood and before puberty. Also, DNS training proposed to improve physical fitness in this population, but the effectiveness and durability of DNS training on specific fitness components have not been well-established.

View Article and Find Full Text PDF

FAM107A Inhibits the Growth, Invasion and Aerobic Glycolysis of LUAD Cells by Regulating CRYAB/PI3K/AKT.

Biochem Genet

January 2025

Department of Cardiac Function, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China.

Lung adenocarcinoma (LUAD) is characterized by its aggressive nature and resistance to treatment. FAM107A is a tumor suppressor gene that has been found to possess inhibitory effects in several cancers, but its role in LUAD remains unclear. This study investigated the role of FAM107A in regulating LUAD cell growth, invasion and aerobic glycolysis and also investigated the potential underlying mechanisms.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse and memory failure, and severe cognitive impairment. Physical exercise stimulates neuroprotective pathways, has pro-cognitive actions, and has been reported to alleviate memory impairment in AD. Irisin, an exercise-induced hormone, is secreted following proteolytic cleavage of fibronectin type-III-domain-containing 5 (FNDC5).

View Article and Find Full Text PDF

SUCLG1 promotes aerobic respiration and progression in plexiform neurofibroma.

Int J Oncol

February 2025

Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.

Plexiform neurofibromas (PNFs) are benign tumors that affect 20‑50% of patients with type I neurofibromatosis (NF1). PNF carries a risk of malignancy. There is no effective cure for PNF.

View Article and Find Full Text PDF

FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer.

J Transl Med

January 2025

Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.

Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!