Manifold alignment can be used to reduce the dimensionality of multiple medical image datasets into a single globally consistent low-dimensional space. This may be desirable in a wide variety of problems, from fusion of different imaging modalities for Alzheimer's disease classification to 4DMR reconstruction from 2D MR slices. Unfortunately, most existing manifold alignment techniques require either a set of prior correspondences or comparability between the datasets in high-dimensional space, which is often not possible. We propose a novel technique for the 'self-alignment' of manifolds (SAM) from multiple dissimilar imaging datasets without prior correspondences or inter-dataset image comparisons. We quantitatively evaluate the method on 4DMR reconstruction from realistic, synthetic sagittal 2D MR slices from 6 volunteers and real data from 4 volunteers. Additionally, we demonstrate the technique for the compounding of two free breathing 3D ultrasound views from one volunteer. The proposed method performs significantly better for 4DMR reconstruction than state-of-the-art image-based techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-19992-4_28DOI Listing

Publication Analysis

Top Keywords

4dmr reconstruction
12
medical image
8
image datasets
8
manifold alignment
8
prior correspondences
8
self-aligning manifolds
4
manifolds matching
4
matching disparate
4
disparate medical
4
datasets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!