Similipal Biosphere Reserve (SBR) is a tropical moist deciduous forest dominated by the species Shorea robusta . To the best of our knowledge their rich biodiversity has not been explored in term of its microbial wealth. In the present investigation, soil samples were collected from ten selected sites inside SBR and studied for their physicochemical parameters and culturable soil fungal diversity. The soil samples were found to be acidic in nature with a pH ranging from of 5.1-6.0. Highest percentage of organic carbon and moisture content were observed in the samples collected from the sites, Chahala-1 and Chahala-2. The plate count revealed that fungal population ranged from 3.6 × 10 (4) -2.1 × 10 (5) and 5.1 × 10 (4) -4.7 × 10 (5) cfu/gm of soil in summer and winter seasons respectively. The soil fungus, Aspergillus niger was found to be the most dominant species and Species Important Values Index (SIVI) was 43.4 and 28.6 in summer and winter seasons respectively. Among the sites studied, highest fungal diversity indices were observed during summer in the sites, Natto-2 and Natto-1. The Shannon-Wiener and Simpson indices in these two sites were found to be 3.12 and 3.022 and 0.9425 and 0.9373 respectively. However, the highest Fisher's alpha was observed during winter in the sites Joranda, Natto-2, Chahala-1 and Natto-1 and the values were 3.780, 3.683, 3.575 and 3.418 respectively. Our investigation revealed that, fungal population was dependent on moisture and organic carbon (%) of the soil but its diversity was found to be regulated by sporulating species like Aspergillus and Penicillium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512052PMC
http://dx.doi.org/10.1590/S1517-838246120131367DOI Listing

Publication Analysis

Top Keywords

culturable soil
8
tropical moist
8
moist deciduous
8
deciduous forest
8
similipal biosphere
8
biosphere reserve
8
soil samples
8
samples collected
8
fungal diversity
8
organic carbon
8

Similar Publications

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

This study focuses on the geotechnical evaluation of the foundation conditions of the Agrippa Monument at the Acropolis of Athens, aiming to propose interventions to improve stability and reduce associated risks. The assessment reveals highly uneven foundation conditions beneath the monument. A thorough collection of bibliographic references and geotechnical surveys was conducted, classifying geomaterials into engineering-geological units and evaluating critical parameters for geotechnical design.

View Article and Find Full Text PDF

Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties.

Int J Mol Sci

January 2025

Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.

Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.

View Article and Find Full Text PDF

Enhanced Dissipation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Soil by the Bioaugmentation with Newly Isolated Strain MC5.

Int J Mol Sci

December 2024

Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.

The presented study investigated the possibility of using the MC5 strain, isolated from raw sewage by the enrichment culture method, in the bioremediation of soil contaminated with selected NSAIDs, i.e., ibuprofen (IBF), diclofenac (DCF), and naproxen (NPX), using the bioaugmentation technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!