Purpose: Diffusion imaging in the prostate is susceptible to distortion from B0 inhomogeneity. Distortion correction in prostate imaging is not routinely performed, resulting in diffusion images without accurate localization of tumors. We performed and evaluated distortion correction for diffusion imaging in the prostate.

Materials And Methods: 28 patients underwent pre-operative MRI (T2, Gadolinium perfusion, diffusion at b=800 s/mm(2)). The restriction spectrum protocol parameters included b-values of 0, 800, 1500, and 4000 s/mm(2) in 30 directions for each nonzero b-value. To correct for distortion, forward and reverse trajectories were collected at b=0 s/mm(2). Distortion maps were generated to reflect the offset of the collected data versus the corrected data. Whole-mount histology was available for correlation.

Results: Across the 27 patients evaluated (excluding one patient due to data collection error), the average root mean square distortion distance of the prostate was 3.1 mm (standard deviation, 2.2mm; and maximum distortion, 12 mm).

Conclusion: Improved localization of prostate cancer by MRI will allow better surgical planning, targeted biopsies and image-guided treatment therapies. Distortion distances of up to 12 mm due to standard diffusion imaging may grossly misdirect treatment decisions. Distortion correction for diffusion imaging in the prostate improves tumor localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594204PMC
http://dx.doi.org/10.1016/j.mri.2015.07.006DOI Listing

Publication Analysis

Top Keywords

diffusion imaging
20
distortion correction
16
distortion
10
imaging prostate
8
correction diffusion
8
prostate
6
imaging
6
diffusion
6
prostate diffusion
4
imaging distortion
4

Similar Publications

Multilayer network analysis in patients with end-stage kidney disease.

Sci Rep

December 2024

Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.

This study aimed to investigate alterations in a multilayer network combining structural and functional layers in patients with end-stage kidney disease (ESKD) compared with healthy controls. In all, 38 ESKD patients and 43 healthy participants were prospectively enrolled. They exhibited normal brain magnetic resonance imaging (MRI) without any structural lesions.

View Article and Find Full Text PDF

Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.

View Article and Find Full Text PDF

Microstructural mapping of neural pathways in Alzheimer's disease using macrostructure-informed normative tractometry.

Alzheimers Dement

December 2024

Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA.

Introduction: Diffusion-weighted magnetic resonance imaging (dMRI) is sensitive to the microstructural properties of brain tissues and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest without considering the underlying fiber geometry.

Methods: We propose a novel macrostructure-informed normative tractometry (MINT) framework to investigate how white matter (WM) microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia.

View Article and Find Full Text PDF

Real-Time Tractography-Assisted Neuronavigation for Transcranial Magnetic Stimulation.

Hum Brain Mapp

January 2025

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.

View Article and Find Full Text PDF

A rare cardiac presentation of a lymphoma: case report.

Eur Heart J Case Rep

January 2025

Department of Cardiology, Klinik Floridsdorf, Brünnerstraße 68, Vienna 1210, Austria.

Background: Cardiac lymphoma is a rare disease that can present in various ways. Additionally, atypical clinical presentation makes the diagnosis even more challenging. The most common type of cardiac lymphoma is diffuse large B-cell lymphoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!