Purpose: Time-of-flight (TOF) MR angiography has an advantage of contrast and resolution in ultra-high field (7 T) MRI systems. However, increased specific absorption rate (SAR) prohibits the application of spatial saturation band, leading to venous contamination in maximum intensity projection (MIP) images.
Methods: A segmented k-space filling scheme with sparse venous saturation pulses was developed for 7 T TOF-MRA. The effectiveness of the segmented TOF sequence was verified by Bloch equation simulation and experiments on 3 T. The protocol on 7 T was optimized and applied for healthy volunteers and patients with vascular diseases.
Results: Segmented TOF achieved equivalent contrast and venous suppression effect as conventional methods, while SAR values had a remarkable reduction and obeyed the limit of a 7 T MRI system. The decreased number of saturation pulses allowed shorter acquisition time than existing solutions. The comparison of segmented TOF and conventional TOF revealed flow direction in vascular diseases.
Conclusion: Segmented TOF is proved to be a time-efficient way to achieve high-resolution angiograms without venous contamination at ultra-high field. The sequence holds strong promise for non-contrast clinical diagnosis on cerebrovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2015.07.002 | DOI Listing |
Front Pediatr
January 2025
Division of Pediatric Cardiology, Division of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City, Kansas City, MO, United States.
Background: In adolescents and adults with tetralogy of Fallot (TOF), right ventricle (RV) electromechanical dyssynchrony (EMD) due to right bundle branch block (RBBB) is associated with reduced exercise capacity and RV dysfunction. While the development of RBBB following surgical repair of tetralogy of Fallot (rTOF) is a frequent sequela, it is not known whether EMD is present in every patient immediately following rTOF. The specific timing of the onset of RBBB following rTOF therefore provides an opportunity to assess whether acute RBBB is associated with the simultaneous acquisition of EMD.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Corelabs, King Abdullah University of Science and Technology, Thuwal 23500-6900, Kingdom of Saudi Arabia.
We introduce here a novel approach, termed time-segmented acquisition (Seg), to enhance the identification of peptides and proteins in trapped ion mobility spectrometry (TIMS)-time-of-flight (TOF) mass spectrometry. Our method exploits the positive correlation between ion mobility values and reversed-phase liquid chromatography (LC) retention time to improve ion separation and resolution. By dividing the LC retention time into multiple segments and applying a segment-specific narrower ion mobility range within the TIMS tunnel, we achieved better separation and higher resolution of ion mobility.
View Article and Find Full Text PDFIran J Med Sci
December 2024
Neonatology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Inadequate pulmonary blood flow in tetralogy of Fallot (TOF) can lead to the development of major aortopulmonary collateral arteries (MAPCA), which interferes with surgical repair. The present study evaluated the features of MAPCAs among patients with TOF and their treatment approaches. Besides, perioperative parameters and mortality rates of our TOF patients with and without MAPCA were compared.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea.
Background: This study aims to investigate how A1 segment asymmetry-also known as A1 dominancy-influences the development of the anterior communicating artery aneurysm (AcomA) as it affects hemodynamic conditions within the circle of Willis (COW). Using time-of-flight magnetic resonance angiography (TOF-MRA), the research introduces a novel approach to assessing shear stress in A1 segments to uncover the hemodynamic factors contributing to AcomA formation.
Method: An observational study was conducted over 6 years at a tertiary university hospital's outpatient clinic.
Med Image Anal
January 2025
School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; Key Laboratory of Big DataBased Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; National Key Laboratory of Kidney Diseases, Beijing, 100853, China. Electronic address:
Precise cerebrovascular segmentation in Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) data is crucial for computer-aided clinical diagnosis. The sparse distribution of cerebrovascular structures within TOF-MRA images often results in high costs for manual data labeling. Leveraging unlabeled TOF-MRA data can significantly enhance model performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!