PET imaging of TSPO in a rat model of local neuroinflammation induced by intracerebral injection of lipopolysaccharide.

Nucl Med Biol

Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium. Electronic address:

Published: October 2015

Objective: The goal of this study was to measure functional and structural aspects of local neuroinflammation induced by intracerebral injection of lipopolysaccharide (LPS) in rats using TSPO microPET imaging with [(18)F]DPA-714, magnetic resonance imaging (MRI), in vitro autoradiography and immunohistochemistry (IHC) in order to characterize a small animal model for screening of new PET tracers targeting neuroinflammation.

Methods: Rats were injected stereotactically with LPS (50 μg) in the right striatum and with saline in the left striatum. [(18)F]DPA-714 microPET, MRI, in vitro autoradiography and IHC studies were performed at different time points after LPS injection for 1 month.

Results: Analysis of the microPET data demonstrated high uptake of the tracer in the LPS injected site with an affected-to-non-affected side-binding potential ratio (BPright-to-left) of 3.0 at 3 days after LPS injection. This BP ratio decreased gradually over time to 0.9 at 30 days after LPS injection. In vitro autoradiography ([(18)F]DPA-714) and IHC (CD68, GFAP and TSPO) confirmed local neuroinflammation in this model. Dynamic contrast enhanced (DCE) MRI demonstrated BBB breakdown near the LPS injection site at day 1, which gradually resolved over time and was absent at 1 month after LPS injection.

Conclusion: The LPS model is useful for first screening of newly developed tracers because of the easy design and the robust, unilateral inflammatory reaction allowing the use of the contralateral region as control. Additionally, this model can be used to test and follow up the benefits of anti-inflammatory therapies by non-invasive imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2015.06.010DOI Listing

Publication Analysis

Top Keywords

lps injection
16
local neuroinflammation
12
vitro autoradiography
12
lps
9
neuroinflammation induced
8
induced intracerebral
8
intracerebral injection
8
injection lipopolysaccharide
8
mri vitro
8
model screening
8

Similar Publications

Increasing evidence suggests that inhibition of receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain-like pseudokinase (MLKL) necrosome has protective effects in vivo models of painful conditions seen in humans associated with inflammation and demyelination in the central nervous system. However, the contribution of RIPK1-driven necroptosis to inflammatory pain remains unknown. Therefore, this study aims to determine the effect of necrostatin (Nec) -1s, a selective RIPK1 inhibitor, on lipopolysaccharide (LPS)-induced inflammatory pain and related underlying mechanisms.

View Article and Find Full Text PDF

The pathogenesis of depression: roles of connexin 43-based gap junctions and inflammation.

Eur J Pharmacol

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208 Hunan, China. Electronic address:

Background: Depression is a leading chronic mental illness worldwide, characterized by anhedonia and pessimism. Connexin is a kind of widely distributed protein in the body. Connexin 43 (Cx43) plays an important role in the pathogenesis of depression.

View Article and Find Full Text PDF

Lipopolysaccharide preconditioning disrupts the behavioral and molecular response to restraint stress in male mice.

Neuroscience

January 2025

Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil. Electronic address:

Major depressive disorder (MDD) is a complex neuropsychiatric disorder potentially influenced by factors such as stress and inflammation. Chronic stress can lead to maladaptive brain changes that may trigger immune hyperactivation, contributing to MDD's pathogenesis. While the involvement of inflammation in MDD is well established, the effects of inflammatory preconditioning in animals subsequently exposed to chronic stress remain unclear.

View Article and Find Full Text PDF

Chronic Dexamethasone Disturbs the Circadian Rhythm of Melatonin and Clock Genes in Goats.

Animals (Basel)

January 2025

Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

Article Synopsis
  • Dex, a drug used for its immunosuppressive and anti-inflammatory effects, disrupts melatonin secretion and biological clock gene expression in goats.
  • After 21 days of Dex treatment, goats showed significantly lower melatonin levels in both plasma and colon, as well as decreased expression of AANAT, a key enzyme for melatonin synthesis.
  • The circadian rhythms of several clock genes were disrupted in the Dex group, along with notable changes in CLOCK and BMAL1 protein levels, indicating that chronic Dex exposure affects biological rhythm regulation.
View Article and Find Full Text PDF

The bursa of Fabricius (BF) plays crucial roles in the goslings' immune system. During waterfowl breeding, the presence of lipopolysaccharides (LPSs) in the environment can induce inflammatory damage in geese. Polysaccharides of Atractylodes macrocephala Koidz (PAMKs), as the main active component of the Chinese medicine Atractylodes macrocephala, have significant immune-enhancing effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!