Here, we present a set of RNA-based probes for whole mitochondrial genome in-solution enrichment, targeting a diversity of mammalian mitogenomes. This probes set was designed from seven mammalian orders and tested to determine the utility for enriching degraded DNA. We generated 63 mitogenomes representing five orders and 22 genera of mammals that yielded varying coverage ranging from 0 to >5400X. Based on a threshold of 70% mitogenome recovery and at least 10× average coverage, 32 individuals or 51% of samples were considered successful. The estimated sequence divergence of samples from the probe sequences used to construct the array ranged up to nearly 20%. Sample type was more predictive of mitogenome recovery than sample age. The proportion of reads from each individual in multiplexed enrichments was highly skewed, with each pool having one sample that yielded a majority of the reads. Recovery across each mitochondrial gene varied with most samples exhibiting regions with gaps or ambiguous sites. We estimated the ability of the probes to capture mitogenomes from a diversity of mammalian taxa not included here by performing a clustering analysis of published sequences for 100 taxa representing most mammalian orders. Our study demonstrates that a general array can be cost and time effective when there is a need to screen a modest number of individuals from a variety of taxa. We also address the practical concerns for using such a tool, with regard to pooling samples, generating high quality mitogenomes and detail a pipeline to remove chimeric molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.12448 | DOI Listing |
Braz J Microbiol
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-900, Brazil.
Despite meticulous precautions, contamination of genomic DNA samples is not uncommon, which can significantly compromise the analysis of microorganisms' whole-genome sequencing data, thus affecting all subsequent analyses. Thanks to advancements in software and bioinformatics techniques, it is now possible to address this issue and prevent the loss of the entire dataset obtained in a contaminated whole-genome sequencing, where the DNA of another bacterium is present. In this study, it was observed that the sequencing reads from Streptomyces sp.
View Article and Find Full Text PDFJ Clin Immunol
January 2025
Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA.
A polyphasic taxonomic study was carried out on strain T9W2-O, isolated from the roots of the aquatic plant . This isolate is rod-shaped, forms yellow/orange pigmented colonies and produces the pigment flexirubin. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Dermatology and Allergy, University Hospital of Munich, Ludwig-Maximilian-University, Munich, Germany.
Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!