ZnO nanorods and Mn/ZnO microflowers with nano-sized petals exhibit singly ionized oxygen vacancies, V. This is strongly supported by a green photoluminescence emission at 2.22 eV and an EPR g value of 1.953, both of which are suppressed greatly after annealing in an oxygen atmosphere. A strong red emission observed during exposure to X-rays reveals the presence of F(+) centres as a consequence of the V. Mn/ZnO displayed enhanced H2 generation with visible light exposure, when compared to pure ZnO and annealed Mn/ZnO in the visible region, which directly correlated with the oxygen vacancy concentration. There is an interesting correlation between the intensities of the EPR lines at the g-value of 1.953 due to the oxygen vacancies, the intensity of light emitted from the exposure to X-rays, the intensity of the photoluminescence due to oxygen vacancies and the quantity of H2 produced by the photocatalytic effect when comparing the three different nanomaterials, viz. pure ZnO, Mn/ZnO before and after annealing, all having been made exactly by the same methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr02666kDOI Listing

Publication Analysis

Top Keywords

oxygen vacancies
16
visible light
8
exposure x-rays
8
pure zno
8
oxygen
6
vacancies intense
4
intense luminescence
4
luminescence manganese
4
manganese loaded
4
zno
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!