Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx /Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2 (.-) intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h(-1) cm(-2) ) at -1.36 VRHE without any considerable catalytic degradation over 18 h of operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201500694 | DOI Listing |
Nat Commun
January 2025
Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
To reliably operate anode-less solid-state Li metal batteries, wherein precipitated Li acts as the anode, stabilizing the interface between the solid electrolyte and electrode is crucial. The interface can be controlled by a metal interlayer on the electrolyte to form a Li alloy buffer that facilitates stable Li plating/stripping, thereby mitigating the loss of physical contact and preventing short circuits. However, the mechanism governing stable Li plating/stripping in the metal interlayer without degrading battery materials remains unclear owing to an incomplete understanding of the dynamic and complex electrochemical reactions in the solid state.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics, Tsinghua University, Beijing, 100084, China.
Lithium dendrite penetration through solid electrolyte has been the major obstacle for practical sulfide-based all-solid-state lithium metal batteries (ASSLMBs). Herein, a series of tailored model solid cells are designed to investigate the intrinsic lithium growth behavior at open surfaces and internal cracks of sulfide solid electrolyte. It is shown that when plating lithium on the open surface of electrolyte (free space), the lithium exhibits an intrinsic columnar growth behavior perpendicular to the electrolyte surface, preferentially along the (110) crystal axis.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Lithium dendrites are widely acknowledged as the main culprit of the degradation of performance in various Li-based batteries. Studying the mechanism of lithium dendrite formation is challenging because of the high reactivity of lithium metal. In this work, a phase field model and in situ observation experiments were used to study the growth kinetics and morphologies of lithium dendrites in terms of anisotropy, temperature, and potential difference.
View Article and Find Full Text PDFLangmuir
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
Metallic Zn is a promising anode for high-safety, low-cost, and large-scale energy storage systems. However, it is strongly hindered by unstable electrode/electrolyte interface issues, including zinc dendrite, corrosion, passivation, and hydrogen evolution reactions. In this work, an in situ interface protection strategy is established by turning the corrosion/passivation byproducts (zinc hydroxide sulfates, ZHSs) into a stable hybrid protection layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!