Contact active surfaces are an innovative tool for developing antibacterial products. Here, the microfibrillated cellulose (MFC) surface was modified with the β-lactam antibiotic benzyl penicillin in aqueous medium to prepare antimicrobial films. Penicillin was grafted on the MFC surface using a suspension of these nanofilaments or directly on films. Films prepared from the penicillin-modified MFC were characterized by Fourier transform infrared spectroscopy, contact angle measurements, elemental analysis, and X-ray photoelectron spectroscopy and tested for antibacterial activity against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Penicillin-grafted MFC films exhibited successful killing effect on Gram-positive bacteria with 3.5-log reduction whereas bacteriostatic efficiency was found in penicillin-grafted MFC suspension. The zone of inhibition test and leaching dynamic assay demonstrated that penicillin was not diffused into the surrounding media, thus proving that the films were indeed contact active. Thus, penicillin can be chemically bound to the modified substrate surface to produce promising nonleaching antimicrobial systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b04938DOI Listing

Publication Analysis

Top Keywords

microfibrillated cellulose
8
contact active
8
mfc surface
8
penicillin-grafted mfc
8
mfc
5
films
5
contact
4
contact antimicrobial
4
surface
4
antimicrobial surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!