Protein absorption at the surface of big nanoparticles and formation of 'protein corona' can completely change their biological properties. In contrast, we have studied the binding of small nanoparticles - dendrimers - to proteins and the formation of their 'nanoparticle corona'. Three different types of interactions were observed. (1) If proteins have rigid structure and active site buried deeply inside, the 'nanoparticle corona' is unaffected. (2) If proteins have a flexible structure and their active site is also buried deeply inside, the 'nanoparticle corona' affects protein structure, but not enzymatic activity. (3) The 'nanoparticle corona' changes both the structure and enzymatic activity of flexible proteins that have surface-based active centers. These differences are important in understanding interactions taking place at a bio-nanointerface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2015.07.017 | DOI Listing |
Langmuir
January 2025
Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India.
Recent times have witnessed revolutionary progress in the design and development of functionalized nanomaterials as promising tools for biomedicinal applications. However, the gap in the fundamental understanding of the "biological responses" of the nanomaterials after the formation of "protein-corona" when it is exposed to the body system has drawn a thin line from its discoveries to real clinical trial. In this article we have synthesized two different silver NPs capped with the polyphenols of (guava) leaf extract and the other with one of its major polyphenolic groups, morin.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Molecular Science, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden.
The recent COVID-19 pandemic has set a strong quest for advanced understanding of possible tracks in abating and eliminating viral infections. In the view that several families of "pristine" small oxide nanoparticles (NPs) have demonstrated viricidal activity against SARS-CoV-2, we studied the effect of two NPs, with presumably different reactivity, on two viruses aiming to evaluate two "primary suspect" routes of their antiviral activity, either specific blocking of surface proteins or causing membrane disruption. The chosen NPs were non-photoactive 3.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
Polymeric nanoparticles (NPs) are promising tools used for immunomodulation and drug delivery in various disease contexts. The interaction between NP surfaces and plasma-resident biomolecules results in the formation of a biomolecular corona, which varies patient-to-patient and as a function of disease state. This study investigates how the progression of acute systemic inflammatory disease influences NP corona compositions and the corresponding effects on innate immune cell interactions, phenotypes, and cytokine responses.
View Article and Find Full Text PDFJ Control Release
January 2025
Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel. Electronic address:
The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
The serum nanoparticle-protein corona (NPC) provides specific disease information, thus opening a new avenue for high-throughput in-depth proteomics to facilitate biomarker discovery. Yet, little is known about the interactions between NPs and proteins, and its role in enhanced depth of serum proteomics. Herein, a series of protein spike-in experiments are conducted to systematically investigate protein depletion and enrichment during NPC formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!