Background: Rapidly improving protocols for the derivation of autologous cells from stem cell sources is a welcome development. However, there are many circumstances when off-the-shelf universally immunocompatible cells may be needed. Embryonic stem cells (ESCs) provide a unique opportunity to modify the original source of differentiated cells to minimize their rejection by nonautologous hosts.

Hypothesis: Immune rejection of nonautologous human embryonic stem cell (hESC) derivatives can be reduced by downregulating human leukocyte antigen (HLA) class I molecules, without affecting the ability of these cells to differentiate into specific lineages.

Methods And Results: Beta-2-microglobulin (B2M) expression was decreased by lentiviral transduction using human anti-HLA class I light-chain B2M short hairpin RNA. mRNA levels of B2M were decreased by 90% in a RUES2-modified hESC line, as determined by quantitative real time-polymerase chain reaction analysis. The transduced cells were selected under puromycin pressure and maintained in an undifferentiated state. The latter was confirmed by Oct4 and Nanog expression, and by the formation of characteristic round-shaped colonies. B2M downregulation led to diminished HLA-I expression on the cell surface, as determined by flow cytometry. When used as target cells in a mixed lymphocyte reaction assay, transduced hESCs and their differentiated derivatives did not stimulate allogeneic T-cell proliferation. Using a cardiac differentiation protocol, transduced hESCs formed a confluent layer of cardiac myocytes and maintained a low level of B2M expression. Transduced hESCs were also successfully differentiated into a hepatic lineage, validating their capacity to differentiate into multiple lineages.

Conclusions: HLA-I depletion does not preclude hESC differentiation into cardiac or hepatic lineages. This methodology can be used to engineer tissue from nonautologous hESC sources with improved immunocompatibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605353PMC
http://dx.doi.org/10.1089/ten.TEA.2015.0105DOI Listing

Publication Analysis

Top Keywords

transduced hescs
12
hla class
8
cells
8
stem cell
8
embryonic stem
8
rejection nonautologous
8
b2m expression
8
hescs differentiated
8
hesc
5
b2m
5

Similar Publications

Purpose: To investigate the osteogenic potential of human embryonic stem cell-derived exosomes (hESC-Exos) and their effects on the differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs).

Methods: hESC-Exos were isolated and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. hUCMSCs were cultured with hESC-Exos to assess osteogenic differentiation through alizarin red staining, quantitative PCR (qPCR), and Western blotting.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR-Cas13 nucleases are advanced tools that can temporarily silence genes by targeting RNA, and recent versions are designed for safe and effective delivery using adeno-associated viruses (AAV).
  • This study highlights the successful use of the Cas13bt3 nuclease in retinal cells, demonstrating its ability to significantly reduce mRNA levels in both human retinal organoids and a specialized mouse model.
  • The findings suggest that Cas13bt3 can function as a promising anti-VEGF agent to help control the growth of blood vessels in the retina, which is crucial for treating conditions like retinal neovascularization.
View Article and Find Full Text PDF

Background: Deer antler stem cells (AnSCs) exhibit properties of both embryonic and mesenchymal stem cells, with superior self-renewal and proliferation, which drive rapid antler growth and regeneration. AnSCs and their derived small extracellular vesicles (sEVs) hold promising potential for applications in regeneration medicine. Due to the restricted proliferative capacity inherent in primary cells, the production capacity of AnSCs and their sEVs are limited.

View Article and Find Full Text PDF

Bats are tolerant to highly pathogenic viruses such as Marburg, Ebola, and Nipah, suggesting the presence of a unique immune tolerance toward viral infection. Here, we compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of human and bat () pluripotent cells and fibroblasts. Since bat cells do not express an angiotensin-converting enzyme 2 (ACE2) receptor that allows virus infection, we transduced the human ACE2 (hA) receptor into the cells and found that transduced cells can be infected with SARS-CoV-2.

View Article and Find Full Text PDF

Our understanding of the transitions of human embryonic stem cells (hESCs) between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of hESCs as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for formation of the actin ring, to establish uniform cell mechanics within naïve colonies, to promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and for effective transition to naïve pluripotency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!