Covalent labeling of solvent exposed amino acid residues using chemical reagents/crosslinkers followed by mass spectrometric analysis can be used to determine the solvent accessible amino acids of a protein. A variety of chemical reagents containing cleavable bonds were developed to label abundantly found lysine residues on the surface of protein. To achieve efficient separation of labeled peptides prior to mass spectrometric analysis, magnetic nanoparticles can be decorated with amino acid reactive functional groups and utilized for quick recovery of labeled peptides. [1] In this work, iron oxide magnetic nanoparticles (Fe3O4 MNPs) were synthesized by thermal decomposition method and coated with silica (SiO2@Fe3O4 MNPs) by reverse micro emulsion approach. The Fe3O4 MNPs and SiO2@Fe3O4 MNPs were characterized by TEM and XRD. The SiO2@Fe3O4 MNPs were further coated with amine groups and conjugated to N-hydroxysuccinimidyl (NHS) ester groups via a cleavable ester bond. Fluorescence based qualitative analysis of ester linked NHS ester modified SiO2@Fe3O4 MNPs was performed to confirm the presence of NHS ester group. The active NHS ester sites on the surface of SiO2@Fe3O4 MNPs were determined by depletion approach and found to be 694 active sites per 1 mg of SiO2@Fe3O4 MNPs. Free amine groups of a small peptide, ACTH (4-11) were labeled by ester linked, NHS ester modified SiO2@Fe3O4 MNPs under physiological conditions. Superparamagnetic nature of SiO2@Fe3O4 MNPs allowed quick and efficient magnetic separation of labeled peptides from the solution. The ester bond was further cleaved to separate labeled peptides followed by mass spectrometric analysis. The ester linked, NHS ester modified SiO2@Fe3O4 MNPs introduced a mass shift of 115.09 Da on amine groups of ACTH (4-11), which was confirmed by mass spectrometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510550PMC
http://dx.doi.org/10.1016/j.dib.2015.05.025DOI Listing

Publication Analysis

Top Keywords

sio2@fe3o4 mnps
36
nhs ester
24
ester linked
16
amine groups
16
labeled peptides
16
magnetic nanoparticles
12
mass spectrometric
12
spectrometric analysis
12
linked nhs
12
ester modified
12

Similar Publications

Covalent labeling of solvent exposed amino acid residues using chemical reagents/crosslinkers followed by mass spectrometric analysis can be used to determine the solvent accessible amino acids of a protein. A variety of chemical reagents containing cleavable bonds were developed to label abundantly found lysine residues on the surface of protein. To achieve efficient separation of labeled peptides prior to mass spectrometric analysis, magnetic nanoparticles can be decorated with amino acid reactive functional groups and utilized for quick recovery of labeled peptides.

View Article and Find Full Text PDF

To study the solvent-exposed lysine residues of peptides/proteins, we previously reported disulfide-linked N-hydroxysuccinimide ester-modified silica-coated iron oxide magnetic nanoparticles (NHS-SS-SiO2@Fe3O4 MNPs). The presence of a disulfide bond in the linker limits the use of disulfide reducing agent during protein digestion and allows unwanted disulfide formation between the MNPs and protein. In the current work, the disulfide bond was replaced with a cleavable ester group to synthesize NHS ester-modified SiO2@Fe3O4 MNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!