NMR spectra and electrochemical behavior of catechol-bearing block copolymer micelles.

Data Brief

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Osaka, Japan ; Frontier Research Center, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Osaka, Japan.

Published: September 2015

AI Article Synopsis

  • The study presents NMR spectra and AFM data for antioxidant micelles made from amphiphilic PAM-PDA block copolymers.
  • These polymers consist of a poly(N-acryloyl morpholine) block and a catechol-bearing block, with varying amounts of catechol.
  • Electrochemical analysis reveals that micelles with more catechol content have a redox potential similar to dopamine, but the redox reaction occurs at a slower rate.

Article Abstract

Here, we provide the NMR spectra and AFM data for antioxidant micelles prepared from amphiphilic PAM-PDA block copolymers composed of a poly(N-acryloyl morpholine) and a redox-active catechol-bearing block with different catechol content. We also provide details of the electrochemical analysis that showed micelles higher catechol content had a similar redox potential with the small catechol compound dopamine, but slowed down the redox reaction (Hasegawa et al., Polymer (in press)).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510377PMC
http://dx.doi.org/10.1016/j.dib.2015.04.004DOI Listing

Publication Analysis

Top Keywords

nmr spectra
8
catechol-bearing block
8
catechol content
8
spectra electrochemical
4
electrochemical behavior
4
behavior catechol-bearing
4
block copolymer
4
copolymer micelles
4
micelles provide
4
provide nmr
4

Similar Publications

Isolation and identification of two novel PDE-5 inhibitors illegally added to pressed candies.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Shanxi Key Laboratory of Food and Drug Safety Prevention and Control, Inspection and Testing Center of Shanxi Province, Taiyuan, Shanxi, China.

Two novel phosphodiesterase 5 (PDE-5) inhibitors were detected in pressed candy using high-performance liquid chromatography (HPLC)-diode array detection. Following extraction with acetonitrile and sonication, the compounds were isolated and purified semi-preparative liquid chromatography. Structural characterisation was achieved through high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

In this study, an optical sensor, JA/(2,6-di((E)-benzylidene)cyclohexan-1-one), was synthesized and characterized using H NMR and FT-IR spectroscopy. The sensor exhibited high efficiency and selectivity in detecting Pb ions, even in the presence of potential interfering ions such as Mn, Cu, Co, Cr, Ni, Ce, Hg, and Cd in aqueous solutions. The interaction of JA with Pb resulted in a significant enhancement of fluorescence intensity, suggesting the formation of a stable complex.

View Article and Find Full Text PDF

Background: Streptomyces roseochromogenes NRRL 3504 produces clorobiocin, an aminocoumarin antibiotic that inhibits DNA replication. No other natural products have been isolated from this bacterium so far, despite the presence of a rich repertoire of specialized metabolite biosynthesis gene clusters (smBGCs) within its genome. Heterologous expression of smBGCs in suitable chassis speeds up the discovery of the natural products hidden behind these sets of genes.

View Article and Find Full Text PDF

Native banana starch (NS) has few limitations, such as poor solubility, low resistance to shear, temperature, and inconsistent retrogradation. This study investigates the effects of mono (α-amylase, pullulunase) and sequential enzymatic modifications of NS along with the application of ultrasound to enhance its functional attributes. Starch modified with α-amylase alone and along with ultrasound resulted the lowest amylose (20.

View Article and Find Full Text PDF

This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!