Data for iTRAQ-based quantitative proteomics analysis of Brassica napus leaves in response to chlorophyll deficiency.

Data Brief

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China ; Nanjing Agricultural University, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China.

Published: March 2015

The essential pigment chlorophyll (Chl) plays important roles in light harvesting and energy transfer during photosynthesis. Here we present the data from a comparative proteomic analysis of chlorophyll-deficient Brassica napus mutant cde1 and its corresponding wild-type using the iTRAQ approach (Pu Chu et al., 2014 [1]). The distribution of length and number of peptides, mass and sequence coverage of proteins identified was calculated, and the repeatability of the replicates was analyzed. A total of 443 differentially expressed proteins were identified in B. napus leaves, including 228 down-accumulated proteins mainly involved in photosynthesis, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites, carbon fixation and 215 up-accumulated proteins that enriched in the spliceosome, mRNA surveillance and RNA degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459558PMC
http://dx.doi.org/10.1016/j.dib.2014.10.004DOI Listing

Publication Analysis

Top Keywords

brassica napus
8
napus leaves
8
proteins identified
8
data itraq-based
4
itraq-based quantitative
4
quantitative proteomics
4
proteomics analysis
4
analysis brassica
4
leaves response
4
response chlorophyll
4

Similar Publications

Calcium levels modulate embryo yield in microspore embryogenesis.

Front Plant Sci

January 2025

Cell Biology Group - Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana (COMAV) Institute, Universitat Politècnica de València, Valencia, Spain.

Calcium (Ca) is a universal signaling cation with a prominent role as second messenger in many different plant processes, including sexual reproduction. However, there is much less knowledge about the involvement of Ca during embryogenesis processes. In this work we performed a study of Ca levels during the different stages of microspore embryogenesis in , with special attention to how Ca can influence the occurrence of different embryogenic structures with different embryogenic potential.

View Article and Find Full Text PDF

Introduction: Due to its favorable traits-such as lower lignin content, higher oil concentration, and increased protein levels-the genetic improvement of yellow-seeded rapeseed has attracted more attention than other rapeseed color variations. Traditionally, yellow-seeded rapeseed has been identified visually, but the complex variability in the seed coat color of has made manual identification challenging and often inaccurate. Another method, using the RGB color system, is frequently employed but is sensitive to photographic conditions, including lighting and camera settings.

View Article and Find Full Text PDF

Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.

View Article and Find Full Text PDF

Boron deficiency is an abiotic stress that negatively impacts plant growth and yield worldwide. Boron deficiency primarily affects the development of plant meristems, groups of stem cells critical for all postembryonic tissue growth. The link between boron and meristem development was first established in 1923, when boron's essentiality was discovered.

View Article and Find Full Text PDF

The introgression of heterologous genomes through interspecific hybridization offers a great opportunity to expand the gene pool of crops, thereby broadening the traits that can be targeted for improvement. The introgression of C genomic regions carrying desirable traits from (AACC) into the diploid (AA) via homoeologous recombination (HR) has been commonly used. However, the precise identification of HR sites remains a significant challenge, limiting the practical application of genome introgression via HR in breeding programs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!