Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival has been attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to Campylobacter. In this study a ground poultry product contaminated with a 6 strain Campylobacter jejuni cocktail was utilized to determine if the efficiency of high-hydrostatic-pressure treatments was negatively impacted by the presence of commonly utilized polyphosphates. Two polyphosphates, hexametaphosphate and sodium tripolyphosphate, used at 2 concentrations, 0.25 and 0.5%, failed to demonstrate any significant negative effects on the efficiency of inactivation of C. jejuni by high-pressure treatment. However, storage at 4°C of the ground poultry samples containing C. jejuni after high-pressure treatment appeared to provide a synergistic effect on Campylobacter inactivation. High-pressure treatment in conjunction with 7 d of storage at 4°C resulted in a mean reduction in C. jejuni survival that was larger than the sum of the individual reductions caused by high pressure or 4°C storage when applied separately.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3382/ps/pev199 | DOI Listing |
Open Vet J
November 2024
Department of Public Health, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq.
Background: Local hen layers play a crucial role in egg production and the poultry industry. Optimizing their performance, egg quality, and overall health is of paramount importance.
Aim: This research aims to examine the effects of different feed forms on gut bacteria and subsequent effects on productivity, egg quality, and intestinal morphology in indigenous laying hens.
J Biomed Mater Res A
January 2025
Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.
The eggshell membrane (ESM), resembling the extracellular matrix (ECM), acts as a protective barrier against bacterial invasion and offers various biofunctions due to its porous structure and protein-rich composition, such as ovalbumin, ovotransferrin, collagen, soluble protein, and antimicrobial proteins. However, the structure of ESM primarily comprises disulfide bonds and heterochains, which poses a challenge for protein solubilization/extraction. Therefore, the method of dissolving and extracting bioactive protein components from ESM has significant potential value and importance for exploring the reuse of egg waste and environmental protection.
View Article and Find Full Text PDFOne Health
December 2024
Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States of America.
Background: Chickens are an important source of animal protein, nutrition, and income in many low- and middle-income countries (LMICs). They are also a major reservoir of enteropathogens that contribute to the burden of illnesses among children. Food systems present a risk for transmission of enteropathogens from poultry to humans, but there is a lack of population-level data on the pattern of purchase, ownership, and consumption of live chickens and their products in LMICs to better characterize that risk.
View Article and Find Full Text PDFFood Res Int
November 2024
Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.
Black Soldier Fly larvae (BSFL) are a promising and sustainable alternative to obtain proteins. Due to their high growth rate and ability to use different substrates as feeding stocks, BSFL can be also used to valorize food waste. Thus, the aim of this research was to unravel the potential use of Spent Coffee Grounds (SCG) and blood meal alone or mixed as feedstocks for BSFL and the nutritional changes for BSFL meal, especially after simulated human in vitro digestion and fermentation.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Biology, University of Turku, FI-20014, Turku, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!