Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels.

J Gen Physiol

Centro Interdisciplinario de Neurociencia de Valparaíso and Programa de Doctorado en Ciencias mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360103, Chile

Published: August 2015

AI Article Synopsis

  • K channels allow selective passage of K(+) ions through their pores, which contain a highly conserved selectivity filter, but their conductance can vary significantly.
  • Mutations at the Pro475 position in the Shaker K channel notably increase its conductance by two to six times, enhancing understanding of the factors influencing K channel conductance without affecting selectivity.
  • Measurements reveal that most resistance in the Shaker K channel occurs in the inner cavity, leading to the conclusion that additional structural modifications are needed to exceed a maximum conductance ceiling of around 200 pS.

Article Abstract

K channels mediate the selective passage of K(+) across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K(+) transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker's reported ∼ 20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼ 0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K(+) is set to ∼ 4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼ 8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K(+)], beyond that of P475D, suggesting an ∼ 200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K(+) transport rates to ∼ 1 kT. Thus, although Shaker's pore sustains ion translocation as the BK channel's does, higher energetic costs of ion stabilization or higher friction with the ion's rigid hydration cage in its narrower aqueous cavity may entail higher resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516780PMC
http://dx.doi.org/10.1085/jgp.201411353DOI Listing

Publication Analysis

Top Keywords

unitary conductance
16
selectivity filter
16
conductance
11
conductance channel
8
p475d p475q
8
pore
6
6
unitary
5
shaker
5
selectivity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!