Conventional low-magnification phase-contrast microscopy is an invaluable, yet a qualitative, imaging tool for the interrogation of transparent objects over a mesoscopic millimeter-scale field-of-view in physical and biological settings. Here, we demonstrate that introducing a compact, unbalanced phase-shifting Michelson interferometer into a standard reflected brightfield microscope equipped with low-power infinity-corrected objectives and white light illumination forms a phase mesoscope that retrieves remotely and quantitatively the reflection phase distribution of thin, transparent, and weakly scattering samples with high temporal (1.38 nm) and spatial (0.87 nm) axial-displacement sensitivity and micrometer lateral resolution (2.3 μm) across a mesoscopic field-of-view (2.25 × 1.19 mm(2)). Using the system, we evaluate the etch-depth uniformity of a large-area nanometer-thick glass grating and show quantitative mesoscopic maps of the optical thickness of human cancer cells without any area scanning. Furthermore, we provide proof-of-principle of the utility of the system for the quantitative monitoring of fluid dynamics within a wide region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517165 | PMC |
http://dx.doi.org/10.1038/srep12560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!