Restoration of CBX7 expression increases the susceptibility of human lung carcinoma cells to irinotecan treatment.

Naunyn Schmiedebergs Arch Pharmacol

Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via S. Pansini 5, Naples, Italy.

Published: November 2015

Lung cancer is one of the most common causes of cancer-related death worldwide in men and women, and, despite the recent remarkable scientific advances, drug treatment is still unsatisfactory. Polycomb protein chromobox homolog 7 (CBX7) is involved in several biological processes, including development and cancer progression, indeed the lack of CBX7 protein correlates with a highly malignant phenotype and a poor prognosis. However, its role in lung cancer still remains unknown. Since CBX7 is drastically downregulated in human lung carcinomas, we investigated whether restoration of CBX7 expression could affect growth property of lung cancer cells and modulate their sensitivity to treatment with irinotecan and etoposide, two chemoterapy drugs most commonly used in lung cancer therapy. Here, we demonstrate that restoration of CBX7 in two human lung carcinoma cell lines (A549 and H1299), in which this protein is not detectable, leads to a decreased proliferation (at least in part through a downregulation of phosphorylated ERK and phosphorylated p38) and an increased apoptotic cell death after drug exposure (at least in part through the downregulation of Bcl-2, phosphorylated Akt, and phosphorylated JNK). Taken together, these results suggest that the retention of CBX7 expression may play a role in the modulation of chemosensitivity of lung cancer patients to the treatment with irinotecan and etoposide.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-015-1153-yDOI Listing

Publication Analysis

Top Keywords

lung cancer
20
restoration cbx7
12
cbx7 expression
12
human lung
12
lung
8
lung carcinoma
8
treatment irinotecan
8
irinotecan etoposide
8
cancer
6
cbx7
6

Similar Publications

Importance: Although differences in the prevalence of key cancer-specific somatic mutations as a function of genetic ancestry among patients with cancer has been well-established, few studies have addressed the practical clinical implications of these differences for the growing number of biomarker-driven treatments.

Objective: To determine if the approval of precision oncology therapies has benefited patients with cancer from various ancestral backgrounds equally over time.

Design, Setting, And Participants: A retrospective analysis of samples from patients with solid cancers who underwent clinical sequencing using the integrated mutation profiling of actionable cancer targets (MSK-IMPACT) assay between January 2014 and December 2022 was carried out.

View Article and Find Full Text PDF

A novel molecular classification for small cell lung cancer (SCLC) has been established utilizing the transcription factors achaete-scute homologue 1 (ASCL1), neurogenic differentiation factor 1 (NeuroD1), POU class 2 homeobox 3 (POU2F3), and yes-associated protein 1 (YAP1). This classification was predicated on the transcription factors. Conversely, there is a paucity of information regarding the distribution of these markers in other subtypes of pulmonary neuroendocrine tumors (PNET).

View Article and Find Full Text PDF

Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.

View Article and Find Full Text PDF

E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.

View Article and Find Full Text PDF

Mutations in the exonuclease domains of the replicative nuclear DNA polymerases POLD1 and POLE are associated with increased cancer incidence, elevated tumor mutation burden (TMB), and enhanced response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond, highlighting the need for a better understanding of how TMB affects tumor biology and subsequently immunotherapy response. To address this, we generated mice with germline and conditional mutations in the exonuclease domains of Pold1 and Pole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!