Background: Neutrophil extracellular traps (NETs) are a central player in the host response to bacteria: neutrophils release extracellular DNA (nucleosomes) and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs in Burkholderia pseudomallei infection (melioidosis), an important cause of Gram-negative sepsis in Southeast Asia.
Methods: In a prospective observational study, circulating nucleosomes and neutrophil elastase were assayed in 44 patients with Gram-negative sepsis caused by B. pseudomallei (melioidosis) and 82 controls. Functional assays included human neutrophil stimulation and killing assays and a murine model of B. pseudomallei infection in which NET function was compromised using DNase. Specified pathogen-free 8- to 12-week-old C57BL/6 mice were sacrificed post-infection to assess bacterial loads, inflammation, and pathology.
Results: Nucleosome and neutrophil elastase levels were markedly elevated in patients compared to controls. NETs killed B. pseudomallei effectively, and neutrophils stimulated with B. pseudomallei showed increased elastase and DNA release in a time- and dose-dependent matter. In mice, NET disruption with intravenous DNase administration resulted in decreased nucleosome levels. Although DNase treatment of mice resulted in diminished liver inflammation, no differences were observed in bacterial dissemination or systemic inflammation.
Conclusion: B. pseudomallei is a potent inducer of NETosis which was reflected by greatly increased levels of NET-related components in melioidosis patients. Although NETs exhibited antibacterial activity against B. pseudomallei, NET formation did not protect against bacterial dissemination and inflammation during B. pseudomallei-induced sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678137 | PMC |
http://dx.doi.org/10.1186/s40635-014-0021-2 | DOI Listing |
Aging Cell
January 2025
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection.
View Article and Find Full Text PDFFEBS J
January 2025
Physics, Department of Molecular and Translational Medicine, University of Brescia, Italy.
Neutrophil elastase (NE) is released by activated neutrophils during an inflammatory response and exerts proteolytic activity on elastin and other extracellular matrix components. This protease is rapidly inhibited by the plasma serine protease inhibitor alpha-1-antitrypsin (AAT), and the importance of this protective activity on lung tissue is highlighted by the development of early onset emphysema in individuals with AAT deficiency. As a serpin, AAT presents a surface-exposed reactive centre loop (RCL) whose sequence mirrors the target protease specificity.
View Article and Find Full Text PDFEquine Vet J
January 2025
University of Liverpool, Institute of Life Course and Medical Sciences, William Henry Duncan Building, Liverpool, UK.
Background: Equine dental diseases significantly impact a horse's overall health, performance and quality of life. They can result in secondary infections and digestive disturbances, potentially leading to colic. A recently described disease affecting the incisors of horses is equine odontoclastic tooth resorption and hypercementosis (EOTRH).
View Article and Find Full Text PDFRegen Biomater
December 2024
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva 4941492, Israel.
Neutrophils and neutrophil extracellular traps (NETs) contribute to thrombosis and hyperinflammation in myeloproliferative neoplasms (MPN). High-density neutrophils (HDNs) and low-density neutrophils (LDNs) have recently been characterized as distinct neutrophil sub-populations with distinct morphological and functional properties. We aim to study the kinetics of NET formation and inhibition with interferon-α (IFNα) in neutrophils derived from patients with MPN as compared to matched healthy controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!