Over 30% of ERα breast cancer patients develop relapses and progress to metastatic disease despite treatment with endocrine therapies. The pioneer factor PBX1 translates epigenetic cues and mediates estrogen induced ERα binding. Here we demonstrate that PBX1 plays a central role in regulating the ERα transcriptional response to epidermal growth factor (EGF) signaling. PBX1 regulates a subset of EGF-ERα genes highly expressed in aggressive breast tumours. Retrospective stratification of luminal patients using PBX1 protein levels in primary cancer further demonstrates that elevated PBX1 protein levels correlate with earlier metastatic progression. In agreement, PBX1 protein levels are significantly upregulated during metastatic progression in ERα-positive breast cancer patients. Finally we reveal that PBX1 upregulation in aggressive tumours is partly mediated by genomic amplification of the PBX1 locus. Correspondingly, ERα-positive breast cancer patients carrying PBX1 amplification are characterized by poor survival. Notably, we demonstrate that PBX1 amplification can be identified in tumor derived-circulating free DNA of ERα-positive metastatic patients. Metastatic patients with PBX1 amplification are also characterized by shorter relapse-free survival. Our data identifies PBX1 amplification as a functional hallmark of aggressive ERα-positive breast cancers. Mechanistically, PBX1 amplification impinges on several critical pathways associated with aggressive ERα-positive breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673133 | PMC |
http://dx.doi.org/10.18632/oncotarget.4243 | DOI Listing |
IUBMB Life
January 2025
Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.
View Article and Find Full Text PDFCancer
February 2025
General Medicine Service, VA Puget Sound Health Care System, Seattle, Washington, USA.
Background: Breast cancer screening (BCS) inequities are evident at national and local levels, and many health systems want to address these inequities, but may lack data about contributing factors. The objective of this study was to inform health system interventions through an exploratory analysis of potential multilevel contributors to BCS inequities using health system data.
Methods: The authors conducted a cross-sectional analysis within a large academic health system including 19,774 individuals who identified as Black (n = 1445) or White (n = 18,329) race and were eligible for BCS.
J Adv Nurs
January 2025
Anesthesiology Department, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, China.
Cancer
February 2025
Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, G-STeP, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.
View Article and Find Full Text PDFMicrosurgery
January 2025
Service de Chirurgie Plastique et Reconstructrice, Hôpital européen Georges-Pompidou, Paris, France.
Objective: The optimal method for maintaining intraoperative blood pressure during microsurgical procedures remains controversial. While intravenous fluid administration is essential, overfilling can lead to complications. Vasopressor agents are used cautiously due to their vasoconstrictive effects, which could potentially lead to flap failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!