Natural abundance (13)C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5an01203aDOI Listing

Publication Analysis

Top Keywords

hyperpolarized nmr
8
cancer cell
8
cell extracts
8
natural abundance
8
single scan
8
hyperpolarized
4
nmr plant
4
plant cancer
4
extracts
4
extracts natural
4

Similar Publications

Nuclear magnetic resonance is extremely attractive for operando studies of chemical reactors. However, the heterogeneous catalyst particles placed inside an NMR probe greatly affect the uniformity of the magnetic field. This problem is especially acute when studying heterogeneous hydrogenation processes using parahydrogen.

View Article and Find Full Text PDF

Indirect Detection of the Protons in and around Biradicals and their Mechanistic Role in MAS-DNP.

J Phys Chem Lett

January 2025

National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, Florida 32310, United States.

The contribution of protons in or near biradical polarizing agents in Dynamic Nuclear Polarization (DNP) has recently been under scrutiny. Results from selective deuteration and simulations have previously suggested that the role of protons in the biradical molecule depends on the strength of the electron-electron coupling. Here we use the cross effect DNP mechanism to identify and acquire H solid-state NMR spectra of the protons that contribute to propagation of the hyperpolarization, via an experimental approach dubbed Nuclear-Nuclear Double Resonance (NUDOR).

View Article and Find Full Text PDF

Ultrasensitive Characterization of Native Bacterial Biofilms via Dynamic Nuclear Polarization-Enhanced Solid-State NMR.

Angew Chem Int Ed Engl

January 2025

University of Pittsburgh School of Medicine, Structural Biology, 3501 5th Ave., Biomedical Science Tower 3, Room 2044, 15261, Pittsburgh, UNITED STATES OF AMERICA.

Bacterial biofilms are major contributors to persistent infections and antimicrobial resistance, posing significant challenges to treatment. However, obtaining high-resolution structural information on native bacterial biofilms has remained elusive due to the methodological limitations associated with analyzing complex biological samples. Solid-state NMR (ssNMR) has shown promise in this regard, but its conventional application is hindered by sensitivity constraints for unlabeled native samples .

View Article and Find Full Text PDF

Tailoring rhodium-based metal-organic layers for parahydrogen-induced polarization: achieving 20% polarization of H in liquid phase.

Natl Sci Rev

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.

View Article and Find Full Text PDF

This research uses perfluorocarbons (PFCs) as effective alternatives to traditional toxic solvents in reversible -hydrogen-induced polarization (PHIP) for NMR signal enhancement. Hydrogen solubility in PFCs is shown here to be an order of magnitude higher than in typical organic solvents by determination of Henry's constants. We demonstrate how this high H solubility enables the PFCs to deliver substantial polarization transfer from -hydrogen, achieving up to 2400-fold signal gains for H NMR detection and 67,000-fold (22% polarization) for N NMR detection at 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!