Os and Os-C are two novel antimicrobial peptides, derived from a tick defensin, which have been shown to have a larger range of antimicrobial activity than the parent peptide, OsDef2. The aim of this study was to determine whether the peptides Os and Os-C are mainly membrane acting, or if these peptides have possible additional intracellular targets in Escherichia coli and Bacillus subtilis. Transmission electron microscopy revealed that both peptides adversely affected intracellular structure of both bacteria causing different degrees of granulation of the intracellular contents. At the minimum bactericidal concentrations, permeabilization as determined with the SYTOX green assay seemed not to be the principle mode of killing when compared to melittin. However, fluorescent triple staining indicated that the peptides caused permeabilization of stationary phase bacteria and TEM indicated membrane effects. Studies using fluorescently labeled peptides revealed that the membrane penetrating activity of Os and Os-C was similar to buforin II. Os-C was found to associate with the septa of B. subtilis. Plasmid binding studies showed that Os and Os-C binds E. coli plasmid DNA at a similar charge ratio as melittin. These studies suggest membrane activity for Os and Os-C with possible intracellular targets such as DNA. The differences in permeabilization at lower concentrations and binding to DNA between Os and Os-C, suggest that the two peptides have dissimilar modes of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2015.07.017DOI Listing

Publication Analysis

Top Keywords

peptides
8
antimicrobial peptides
8
os-c
8
peptides os-c
8
derived tick
8
tick defensin
8
intracellular targets
8
activity os-c
8
investigation mechanism
4
mechanism action
4

Similar Publications

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Effect of heart rate on B-type natriuretic peptide in sinus rhythm.

Sci Rep

December 2024

Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.

B-type natriuretic peptide (BNP) levels accurately reflect the degree of cardiac overload in heart failure. Considering cardiac morphology and intracardiac pressure, including the left ventricular end-systolic volume index (LVESVI) and left ventricular end-diastolic volume index (LVEDVI), is essential for cardiac overload assessment. These indexes influence plasma BNP levels, and high heart rate is likely associated with cardiac morphology.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!