MnO(x) Nanoparticle-Dispersed CeO2 Nanocubes: A Remarkable Heteronanostructured System with Unusual Structural Characteristics and Superior Catalytic Performance.

ACS Appl Mater Interfaces

†Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, Melbourne VIC 3001, Australia.

Published: August 2015

Understanding the interface-induced effects of heteronanostructured catalysts remains a significant challenge due to their structural complexity, but it is crucial for developing novel applied catalytic materials. This work reports a systematic characterization and catalytic evaluation of MnOx nanoparticle-dispersed CeO2 nanocubes for two important industrial applications, namely, diesel soot oxidation and continuous-flow benzylamine oxidation. The X-ray diffraction and Raman studies reveal an unusual lattice expansion in CeO2 after the addition of MnOx. This interesting observation is due to conversion of smaller sized Ce(4+) (0.097 nm) to larger sized Ce(3+) (0.114 nm) in cerium oxide led by the strong interaction between MnOx and CeO2 at their interface. Another striking observation noticed from transmission electron microscopy, high angle annular dark-field scanning transmission electron microscopy, and electron energy loss spectroscopy studies is that the MnOx species are well-dispersed along the edges of the CeO2 nanocubes. This remarkable decoration leads to an enhanced reducible nature of the cerium oxide at the MnOx/CeO2 interface. It was found that MnOx/CeO2 heteronanostructures efficiently catalyze soot oxidation at lower temperatures (50% soot conversion, T50 ∼660 K) compared with that of bare CeO2 nanocubes (T50 ∼723 K). Importantly, the MnOx/CeO2 heteronanostructures exhibit a noticeable steady performance in the oxidation of benzylamine with a high selectivity of the dibenzylimine product (∼94-98%) compared with that of CeO2 nanocubes (∼69-91%). The existence of a strong synergistic effect at the interface sites between the CeO2 and MnOx components is a key factor for outstanding catalytic efficiency of the MnOx/CeO2 heteronanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b03988DOI Listing

Publication Analysis

Top Keywords

ceo2 nanocubes
20
mnox/ceo2 heteronanostructures
12
mnox nanoparticle-dispersed
8
ceo2
8
nanoparticle-dispersed ceo2
8
nanocubes remarkable
8
soot oxidation
8
cerium oxide
8
transmission electron
8
electron microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!