AI Article Synopsis

  • The study identifies ubiquitin-specific protease USP8 as a key regulatory component in T cell signaling and its interaction with Gads and 14-3-3β.
  • USP8 is crucial for thymocyte maturation and the upregulation of the IL-7Rα gene by the transcription factor Foxo1.
  • Mice deficient in USP8 in T cells develop colitis due to disrupted T cell balance, suggesting that USP8 plays a significant role in immune regulation.

Article Abstract

The modification of proteins by ubiquitin has a major role in cells of the immune system and is counteracted by various deubiquitinating enzymes (DUBs) with poorly defined functions. Here we identified the ubiquitin-specific protease USP8 as a regulatory component of the T cell antigen receptor (TCR) signalosome that interacted with the adaptor Gads and the regulatory molecule 14-3-3β. Caspase-dependent processing of USP8 occurred after stimulation of the TCR. T cell-specific deletion of USP8 in mice revealed that USP8 was essential for thymocyte maturation and upregulation of the gene encoding the cytokine receptor IL-7Rα mediated by the transcription factor Foxo1. Mice with T cell-specific USP8 deficiency developed colitis that was promoted by disturbed T cell homeostasis, a predominance of CD8(+) γδ T cells in the intestine and impaired regulatory T cell function. Collectively, our data reveal an unexpected role for USP8 as an immunomodulatory DUB in T cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni.3230DOI Listing

Publication Analysis

Top Keywords

ubiquitin-specific protease
8
protease usp8
8
usp8
7
usp8 critical
4
critical development
4
development homeostasis
4
cells
4
homeostasis cells
4
cells modification
4
modification proteins
4

Similar Publications

Research progress in deubiquitinase OTUD3.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

School of Economics and Management, Beijing Forestry University, Beijing 100083, China.

OTU domain-containing protein 3 (OTUD3) is a crucial deubiquitinase that exhibits significant expression differences across various disease models. OTUD3 plays a role in regulating biological functions such as apoptosis, inflammatory responses, cell cycle, proliferation, and invasion in different cell types. By deubiquitinating key substrate proteins, OTUD3 is involved in essential physiological and pathological processes, including innate antiviral immunity, neural development, neurodegenerative diseases, and cancer.

View Article and Find Full Text PDF

Ubiquitin-specific protease 25 (USP25), a member of the deubiquitination family, plays an important role in protein ubiquitination, degradation, inflammation, and immune regulation. However, the role and mechanism of USP25 in ulcerative colitis (UC) remain unclear. To study the role and mechanism of USP25 in UC, bioinformatics analysis and research are conducted on clinical patients with UC, Usp25 knockout (Usp25) mice, intestinal epithelial cell-specific knockout signal transducer and activator of transcription 3 (Stat3) (Villin-Cre Stat3) mice, and human colonic epithelial cells.

View Article and Find Full Text PDF

Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.

View Article and Find Full Text PDF

SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!