While it is traditionally accepted that the chain interactions responsible for the elastic response in an elastomeric network are ideally permanent and instantaneously active, the ongoing investigation of self-healing materials reveals that the introduction of self-healing properties into elastomers requires high mechanical integrity under dynamic load conditions, while on long timescales (or at extended temperatures), the chain and bond dynamics must allow for an intrinsic repair of micro cracks occurring during operation and aging. Based on an acrylate-based amorphous ionomer model system with pendant carboxylate groups allowing the systematic variation of the composition and the nature of the counter ion, we demonstrate the interrelation between the morphological, thermal, and mechanical properties, and identify the prerequisites and tools for property adjustment and optimization of self-healing efficiency. While the ion fraction is directly related to the effective network density and elastic performance, the crossover frequency between viscous and elastic behavior is influenced by the nature of the counter ion. In order to achieve reliable elastic response and optimal damage repair, the ion fraction in these systems should be in the range of 5 mol% and the chain dynamics should be appropriate to allow for excellent self-healing behavior at moderate healing temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp00620a | DOI Listing |
Sci Rep
January 2025
Jun Shi Department of Ultrasound, The First Hospital of Hebei Medical University, Shijiazhuang City, 050031, Hebei Province, China.
Transrectal shear wave elastography (T-SWE) can be used non-invasively to diagnose prostate cancer (PCa) and benign prostatic hyperplasia (BPH). The prostate tissue can be viewed as an ellipsoidal sphere with viscoelastic characterization. Linear elastic model has been used to characterize soft tissues, and the simplification of partial characterization provides incomplete information.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China.
Type 1 resistant starch (RS1) was prepared by high-pressure homogenization of corn starch (CS) embedded with 0.1 %, 0.3 %, 0.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, United Kingdom.
Many machine learning techniques have been used to construct gene regulatory networks (GRNs) through precision matrix that considers conditional independence among genes, and finally produces sparse version of GRNs. This construction can be improved using the auxiliary information like gene expression profile of the related species or gene markers. To reach out this goal, we apply a generalized linear model (GLM) in first step and later a penalized maximum likelihood to construct the gene regulatory network using Glasso technique for the residuals of a multi-level multivariate GLM among the gene expressions of one species as a multi-levels response variable and the gene expression of related species as a multivariate covariates.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of California, Department of Physics, Berkeley, California 94720, USA.
The Mu2e and COMET experiments are expected to improve existing limits on charged lepton flavor violation (CLFV) by roughly 4 orders of magnitude. μ→e conversion experiments are typically optimized for electrons produced without nuclear excitation, as this maximizes the electron energy and minimizes backgrounds from the free decay of the muon. Here we argue that Mu2e and COMET will be able to extract additional constraints on CLFV from inelastic μ→e conversion, given the ^{27}Al target they have chosen and backgrounds they anticipate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!