Sugars can stabilize biological systems under extreme desiccation and freezing conditions. Hypothetical molecular mechanisms suggest that the stabilization effect may be determined either by specific interactions of sugars with biological molecules or by the influence of sugars on the solvating shell of the biomolecule. To explore membrane-sugar interactions, we applied electron spin echo envelope modulation (ESEEM) spectroscopy, a pulsed version of electron paramagnetic resonance (EPR), to phospholipid bilayers with spin-labeled lipids added and solvated by aqueous deuterated sucrose and trehalose solutions. The phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The spin-labeled lipids were 1,2-dipalmitoyl-sn-glycero-3-phospho(TEMPO)choline (T-PCSL), with spin-label TEMPO at the lipid polar headgroup. The deuterium ESEEM amplitude was calibrated using known concentrations of glassy deuterated sugar solvents. The data obtained indicated that the sugar concentration near the membrane surface obeyed a simple Langmuir model of monolayer adsorption, which assumes direct sugar-molecule bonding to the bilayer surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.5b06864 | DOI Listing |
bioRxiv
September 2024
Department of Biology, New York University, New York, New York, 10003, USA.
Unlabelled: The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is critical for the mechanical integrity of the cell envelope and therefore to the robustness of the bacterial cell as a whole. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
October 2023
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China.
Background: Filamentous fungi possess a rich CAZymes system, which is widely studied and applied in the bio-conversion of plant biomass to alcohol chemicals. Carbon source acquisition is the fundamental driver for CAZymes-producing sustainability and secondary metabolism, therefore, a deeper insight into the regulatory network of sugar transport in filamentous fungi has become urgent.
Results: This study reports an important linkage of sulfur assimilation to lignocellulose response of filamentous fungus.
Langmuir
October 2020
Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia.
Small sugars are known to stabilize biological membranes under extreme conditions of freezing and desiccation. The proposed mechanisms of stabilization suggest membrane-sugar interactions to be either attractive or repulsive. To obtain new insight into the problem, we use a recently developed low-frequency Raman scattering approach which allows detecting membrane mechanical vibrations.
View Article and Find Full Text PDFPlanta
March 2018
Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France.
The regulation of source-to-sink sucrose transport is associated with AtSUC and AtSWEET sucrose transporters' gene expression changes in plants grown hydroponically under different physiological conditions. Source-to-sink transport of sucrose is one of the major determinants of plant growth. Whole-plant carbohydrates' partitioning requires the specific activity of membrane sugar transporters.
View Article and Find Full Text PDFJ Phys Chem B
August 2015
‡Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia.
Sugars can stabilize biological systems under extreme desiccation and freezing conditions. Hypothetical molecular mechanisms suggest that the stabilization effect may be determined either by specific interactions of sugars with biological molecules or by the influence of sugars on the solvating shell of the biomolecule. To explore membrane-sugar interactions, we applied electron spin echo envelope modulation (ESEEM) spectroscopy, a pulsed version of electron paramagnetic resonance (EPR), to phospholipid bilayers with spin-labeled lipids added and solvated by aqueous deuterated sucrose and trehalose solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!