Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2015.1043905 | DOI Listing |
Ann Ital Chir
January 2025
Department of Thoracic Surgery, Mindong Hospital Affiliated to Fujian Medical University, 355000 Fu'an, Fujian China.
Aim: This study aimed to explore the efficacy of open reduction and internal fixation assisted by handheld ultrasound combined with three-dimensional (3D) printing technology in treating multiple rib fractures.
Methods: We retrospectively analyzed the clinical data from 84 patients affected with multiple rib fractures admitted to our hospital between August 2022 and April 2024. After excluding four cases, 80 cases were included in this study.
Ann Ital Chir
January 2025
Medical Department, Ningbo No.9 Hospital, 315020 Ningbo, Zhejiang, China.
Aim: This study aimed to develop a reliable and efficient system for predicting and locating rib fractures in medical images using an ensemble of convolutional neural networks (CNNs).
Methods: We employed five CNN architectures-Visual Geometry Group Network 16 (VGG16), Densely Connected Convolutional Network 169 (DenseNet169), Inception Version 4 (Inception V4), Efficient Network B7 (EfficientNet-B7), and Residual Network Next 50 layers (ResNeXt-50)-trained on a dataset of 840 grayscale computed tomography (CT) scan images in .jpg format collected from 42 patients at a local hospital.
J Emerg Med
August 2024
Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina; Durham Veterans Affairs Healthcare System, 508 Fulton St, Durham, North Carolina. Electronic address:
Background: Rib fractures are frequently diagnosed and treated in the emergency department (ED). Thoracic trauma has serious morbidity and mortality, particularly in older adults, with complications including pulmonary contusions, hemorrhage, pneumonia, or death. Bedside ED-performed ultrasound-guided anesthesia is gaining in popularity, and early and adequate pain control has shown improved patient outcomes with rare complications.
View Article and Find Full Text PDFJ Orthop Trauma
December 2024
Department of Orthopaedic Surgery, Regions Hospital, St. Paul, MN.
As the operative management of acute, chest wall, skeletal injury escalates throughout the world, it has become commonplace for patients with posttraumatic conditions to present with clinical reconstructive challenges as well. In addition, it is becoming clear that rib nonunions are not rare, likely more than 5% of rib fractures. No subspecialty is better equipped to address such painful conditions than orthopaedic surgery.
View Article and Find Full Text PDFJ Orthop Trauma
December 2024
OhioHealth, Grant Medical Center, Columbus, OH.
Modern techniques of rib fracture fixation surgery follow the AO principles of fracture reduction, fixation, and appropriate soft tissue handling. Fixation techniques can be performed using anatomic reduction and rigid fixation, or bridge plate fixation for comminuted fractures. Anatomic and nonanatomic plates can be used, although titanium precontoured locking plates are the most commonly used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!