Rationale: Carbon monoxide (CO) exposure is a leading cause of poison-related mortality. CO binds to Hb, forming carboxyhemoglobin (COHb), and produces tissue damage. Treatment of CO poisoning requires rapid removal of CO and restoration of oxygen delivery. Visible light is known to effectively dissociate CO from Hb, with a single photon dissociating one CO molecule.
Objectives: To determine whether illumination of the lungs of CO-poisoned mice causes dissociation of COHb from blood transiting the lungs, releasing CO into alveoli and thereby enhancing the rate of CO elimination.
Methods: We developed a model of CO poisoning in anesthetized and mechanically ventilated mice to assess the effects of direct lung illumination (phototherapy) on the CO elimination rate. Light at wavelengths between 532 and 690 nm was tested. The effect of lung phototherapy administered during CO poisoning was also studied. To avoid a thoracotomy, we assessed the effect of lung phototherapy delivered to murine lungs via an optical fiber placed in the esophagus.
Measurements And Main Results: In CO-poisoned mice, phototherapy of exposed lungs at 532, 570, 592, and 628 nm dissociated CO from Hb and doubled the CO elimination rate. Phototherapy administered during severe CO poisoning limited the blood COHb increase and improved the survival rate. Noninvasive transesophageal phototherapy delivered to murine lungs via an optical fiber increased the rate of CO elimination while avoiding a thoracotomy.
Conclusions: Future development and scaling up of lung phototherapy for patients with CO exposure may provide a significant advance for treating and preventing CO poisoning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731621 | PMC |
http://dx.doi.org/10.1164/rccm.201503-0609OC | DOI Listing |
J Nanobiotechnology
January 2025
Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China.
A series of dinuclear Ir(III) complexes have been constructed for enhanced photodynamic and photothermal therapy (PDT and PTT) for cisplatin-resistant non-small-cell lung cancer. They enter cells via caveolar endocytosis, target mitochondria but not nuclear, generate both singlet oxygen and superoxide anion, and release heat when exposed to infrared (IR) irradiation, thus inducing reactive oxygen species (ROS)-associated cell disruption and thermal ablation. The IR-generated ROS can further activate caspases, triggering apoptosis.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, People's Republic of China.
Background: The lymphatic system is the major route of cancer metastasis, and sentinel lymph nodes (SLNs) are the first station for the spread of cancer cells. Accurate identification of SLNs by tracers during surgery is crucial for SLN biopsy and lymphadenectomy. However, conventional monomodal tracers such as blue dyes and carbon nanoparticles often induce a misjudgment of SLNs and thus are still unsatisfying for clinical applications.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
Cyanine dye-containing nanoparticles have widely been used in "all-in-one" NIR fluorescence imaging (FI)-guided photothermal therapy (PTT) because of their intrinsically large extinction coefficient and available physical and chemical modulation methods to tune absorption and emission wavelengths. The combination of good brightness and excellent tumor-targeting capacity is the key to realize efficient NIR-II FI-guided PTT. In this study, by covalently decorating NIR-II absorptive cyanine dyes with bulky AIE motify, we demonstrate how steric hindrance suppresses π-π stacking-induced fluorescence quenching and contributes to the good brightness of NIR-II FI of subcutaneous glioblastoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!