Cryptosporidium, a protozoan parasite that can cause severe diarrhea in a wide range of vertebrates including humans, is increasingly recognized as a parasite of a diverse range of wildlife species. However, little data are available regarding the identification of Cryptosporidium species and genotypes in wild aquatic environments, and more particularly in edible freshwater fish. To evaluate the prevalence of Cryptosporidiumspp. in fish from Lake Geneva (Lac Léman) in France, 41 entire fish and 100 fillets (cuts of fish flesh) were collected from fishery suppliers around the lake. Nested PCR using degenerate primers followed by sequence analysis was used. Five fish species were identified as potential hosts of Cryptosporidium: Salvelinus alpinus, Esox lucius, Coregonus lavaretus, Perca fluviatilis, and Rutilus rutilus. The presence of Cryptosporidium spp. was found in 15 out of 41 fish (37%), distributed as follows: 13 (87%) C. parvum, 1 (7%) C. molnari, and 1 (7%) mixed infection (C. parvum and C. molnari). C. molnari was identified in the stomach, while C. parvum was found in the stomach and intestine. C. molnari was also detected in 1 out of 100 analyzed fillets. In order to identify Cryptosporidium subtypes, sequencing of the highly polymorphic 60-kDa glycoprotein (gp60) was performed. Among the C. parvum positive samples, three gp60 subtypes were identified: IIaA15G2R1, IIaA16G2R1, and IIaA17G2R1. Histological examination confirmed the presence of potential developmental stages of C. parvum within digestive epithelial cells. These observations suggest that C. parvum is infecting fish, rather than being passively carried. Since C. parvum is a zoonotic species, fish potentially contaminated by the same subtypes found in terrestrial mammals would be an additional source of infection for humans and animals, and may also contribute to the contamination of the environment with this parasite. Moreover, the risk of human transmission is strengthened by the observation of edible fillet contamination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516323 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133047 | PLOS |
PLoS One
December 2024
Animal Science Department, Universidad Nacional de Colombia, Palmira Valle, Colombia.
The association of parasites and diatoms has been previously reported as an important mechanism to control bacteria and parasites to avoid resistance to chemical usage. The aim of this study was to investigate the association between diatoms genus and parasites within the gastrointestinal compartments (GICs) of commercial fish in fisheries of the marine Pacific coast of Colombia (Buenaventura). A total of 104 GICs from marine fish were sampled.
View Article and Find Full Text PDFPLoS One
December 2024
College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America.
The capacity for a non-native species to become invasive largely hinges on existing dispersal capacity or adaptation of dispersal in new environments. Here we provide early evidence that invasive Northern Pike (Esox lucius), a Holarctic freshwater top predator, illegally introduced in the late 1950s into Southcentral Alaska, are now dispersing through estuarine corridors. This finding represents the first known documentation of estuary use and dispersal by Northern Pike in North America, exacerbating conservation concerns for already depressed populations of culturally and economically important species such as salmonids.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
Spinosyns are secondary metabolites produced by known for their potent insecticidal properties and broad pesticidal spectrum. We report significant advancements in spinosyn biosynthesis achieved through a genome combination improvement strategy in . By integrating modified genome shuffling with ultraviolet mutation and multiomics analysis, we developed a high-yield spinosyn strain designated as YX2.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA.
Fluorescence in situ hybridization enables the visualization of organisms in the environment without having to culture them. Here, we describe a FISH protocol to visualize oomycete structures (mycelia, sporangiophores, sporangia, and oospores) directly as well as from colonized plant material. The protocol utilizes organic compounds with low toxicities and does not require a permeabilization step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!