AI Article Synopsis

  • Satellite data from Aquarius and SMOS were used to analyze sea surface salinity (SSS) variations and shelf-open ocean exchanges near 35°S in the western South Atlantic, revealing significant seasonal patterns in SSS.
  • In spring and summer, low-salinity shelf waters expand offshore primarily southeast of river mouths, while in fall and winter, these waters follow a coastal plume to the open ocean.
  • The export patterns of these waters are influenced by wind stress and specific oceanic circulation features, resulting in unique low-salinity water dynamics during different seasons.

Article Abstract

Unlabelled: Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30'S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean.

Key Points: Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508963PMC
http://dx.doi.org/10.1002/2014JC010113DOI Listing

Publication Analysis

Top Keywords

shelf waters
12
low-salinity waters
12
low-salinity
10
satellite-derived sea
8
sea surface
8
south atlantic
8
location export
8
low-salinity shelf
8
summer low-salinity
8
open ocean
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!