Understanding carbon regulation in aquatic systems - Bacteriophages as a model.

F1000Res

Analytical Instrumentation Division (AID), CSIR-NEERI, Nehru Marg, Maharashtra, Nagpur-440020, India.

Published: July 2015

The bacteria and their phages are the most abundant constituents of the aquatic environment, and so represent an ideal model for studying carbon regulation in an aquatic system. The microbe-mediated interconversion of bioavailable organic carbon (OC) into dissolved organic carbon (DOC) by the microbial carbon pump (MCP) has been suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that DOC is the largest pool of organic matter in the ocean and, though a major component of the global carbon cycle, its source is not yet well understood. A key element of the carbon cycle is the microbial conversion of DOC into inedible forms. The primary aim of this study is to understand the phage conversion from organic to inorganic carbon during phage-host interactions. Time studies of phage-host interactions under controlled conditions reveal their impact on the total carbon content of the samples and their interconversion of organic and inorganic carbon compared to control samples. A total organic carbon (TOC) analysis showed an increase in inorganic carbon content by 15-25 percent in samples with bacteria and phage compared to samples with bacteria alone. Compared to control samples, the increase in inorganic carbon content was 60-70-fold in samples with bacteria and phage, and 50-55-fold for samples with bacteria alone. This study indicates the potential impact of phages in regulating the carbon cycle of aquatic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505785PMC
http://dx.doi.org/10.12688/f1000research.6031.1DOI Listing

Publication Analysis

Top Keywords

inorganic carbon
16
samples bacteria
16
carbon
14
organic carbon
12
carbon cycle
12
carbon content
12
carbon regulation
8
regulation aquatic
8
aquatic systems
8
organic inorganic
8

Similar Publications

The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.

View Article and Find Full Text PDF

The development of ultraviolet (UV) shielding materials is of great importance to protect human health and prevent the degradation of organic matter. However, the synthesis of highly efficient UV shielding polymer nanocomposites is currently limited by the agglomeration of inorganic anti-UV nanoparticles (NPs) within the polymer matrix and the limited absorption spectrum of UV shielding agents. In this study, highly effective manganese doped carbon quantum dots@halloysite nanotube composites (Mn-CDs@HNTs/PAS) were successfully synthesized by loading manganese-doped carbon quantum dots (Mn-CDs) into UV shielding effective halloysite nanotubes (HNTs) via the solvothermal method, followed by polymerization modification (PAS).

View Article and Find Full Text PDF

Diatomic catalysts featuring a tunable structure and synergetic effects hold great promise for various reactions. However, their precise construction with specific configurations and diverse metal combinations is still challenging. Here, a selective etching and metal ion adsorption strategy is proposed to accurately assign a second metal atom (M) geminal to the single atom site (M-N) for constructing diatomic sites (e.

View Article and Find Full Text PDF

Synergistic enhancement of high-barrier polylactic acid packaging materials by various morphological carbonized cellulose nanocrystals.

Carbohydr Polym

March 2025

Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

The environmental challenges linked to petroleum-based polymers have accelerated the search for alternative materials like polylactic acid (PLA). Diverse nanofillers, ranging from inorganic to organic and hybrid inorganic/organic varieties, are employed to bolster PLA performance. Yet, non-synergistic nanofillers often underperform due to inadequate dispersion and singular functionality within the PLA matrix.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Cuttlebone (CB), also known as SEPIAE ENDOCONCHA, is the inner shell of cuttlefish and has been employed in traditional medicine in numerous countries since antiquity. Despite its significant medicinal value, CB is often underestimated and discarded on the beach as debris in some countries, which considerably impacts the environment and economy.

The Aim Of The Review: This study aims to elucidate the value of CB, particularly in the context of its medicinal properties, to promote its rational utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!