Background: Butanol is regarded as an advanced biofuel that can be derived from renewable biomass. However, the main challenge for microbial butanol production is low butanol titer, yield and productivity, leading to intensive energy consumption in product recovery. Various alternative separation technologies such as extraction, adsorption and gas stripping, etc., could be integrated with acetone-butanol-ethanol (ABE) fermentation with improving butanol productivity, but their butanol selectivities are not satisfactory. The membrane-based pervaporation technology is recently attracting increasing attention since it has potentially desirable butanol selectivity.
Results: The performance of the zeolite-mixed polydimethylsiloxane (PDMS) membranes were evaluated to recover butanol from butanol/water binary solution as well as fermentation broth in the integrated ABE fermentation system. The separation factor and butanol titer in permeate of the zeolite-mixed PDMS membrane were up to 33.0 and 334.6 g/L at 80°C, respectively, which increased with increasing zeolite loading weight in the membrane as well as feed temperature. The enhanced butanol separation factor was attributed to the hydrophobic zeolites with large pore size providing selective routes preferable for butanol permeation. In fed-batch fermentation incorporated with pervaporation, 54.9 g/L ABE (34.5 g/L butanol, 17.0 g/L acetone and 3.4 g/L ethanol) were produced from 172.3 g/L glucose. The overall butanol productivity and yield increased by 16.0 and 11.1%, respectively, which was attributed to the alleviated butanol inhibition by pervaporation and reassimilation of acids for ABE production. The zeolite-mixed membrane produced a highly concentrated condensate containing 169.6 g/L butanol or 253.3 g/L ABE, which after phase separation easily gave the final product containing >600 g/L butanol.
Conclusions: Zeolite loading in the PDMS matrix was attributed to improving the pervaporative performance of the membrane, showing great potential to recover butanol with high purity. Therefore, this zeolite-mixed PDMS membrane had the potential to improve biobutanol production when integrating with ABE fermentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513751 | PMC |
http://dx.doi.org/10.1186/s13068-015-0288-x | DOI Listing |
Polymers (Basel)
December 2024
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia.
The pervaporation properties of membranes based on comb-like polysiloxanes when C-C alcohols are removed from water were studied for the first time. It was established that membranes based on comb-like polysiloxanes with linear aliphatic and organosilicon substituents have increased permeability selectivity for C alcohols. The obtained results were interpreted from the point of view of the solubility of the components of the separated mixture in polysiloxanes.
View Article and Find Full Text PDFToxics
December 2024
Health and Safety Convergence Science Introduction, College of Health Science, Korea University, Seoul 02841, Republic of Korea.
In the shipbuilding industry, during the painting process, workers are exposed to various substances in paint, including organic solvents that can adversely affect their health. Most workplace exposures to organic solvents involve mixtures of organic compounds. Therefore, in this study, the hazard quotient (HQ) and hazard index (HI) were derived using data from the Workplace Environmental Monitoring Program in Korea for six organic solvents (xylene, n-butanol, ethylbenzene, isobutyl alcohol, toluene, and methylisobutyl ketone [MIBK]) commonly used in the steel shipbuilding industry.
View Article and Find Full Text PDFMolecules
December 2024
Laboratory of Chemistry and Environmental Chemistry (LCCE), Department of Chemistry, Faculty of Matter Sciences, University of Batna 1, Batna 05000, Algeria.
Twelve compounds (-), kaempferol (), luteolin (), luteolin 4'--xyloside (), luteolin 4'--β-glucoside (), quercetin 4'--β-xyloside (), kaempferol-3--[6″--(E)-p-coumaroyl]-β-D-glucoside (-tiliroside) (), protocatechuic acid (), gallic acid (), methyl gallate (), ethyl gallate (), shikimic acid-3--gallate (), and 3,3',4'-tri--methyl-ellagic acid 4-sulfate (), were isolated and identified from the aerial parts of (Cav.) Pers (synonym: C. Presl.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
The unique fuel characteristics of butanol and the possibility of its microbial production make it one of the most desirable environmentally friendly substitutes for petroleum fuels. However, the highly toxic nature of 1-butanol to the bacterial strains makes it unprofitable for commercial production. By comparison, 2-butanol has similar fuel qualities, and despite the difficulties in its microbial synthesis, it holds promise because it may be less toxic.
View Article and Find Full Text PDFFront Pharmacol
December 2024
College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
Introduction: Pharmacological studies have shown that the rhizome of Atractylodes macrocephala Koidz. (Compositae), commonly known as atractylodes macrocephala rhizome (AMR), can modulate immunity. Nevertheless, its resources have been largely depleted, and the pharmacological activity of artificial AMR is relatively modest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!