Intracellular metabolism of amyloid β-protein precursor (APP) is important for the pathogenesis of Alzheimer's disease (AD). Alcadeins (Alcα, Alcβ, and Alcγ) are neural membrane proteins similar to APP in their localization, metabolism, and cellular function. Isoform ε4 of apolipoprotein E (ApoE) is a major risk factor for AD. We found that ApoE expression attenuated intracellular trafficking of APP and Alcβ, resulting in metabolic stabilization of both proteins. By contrast, Alcα intracellular proteolysis was facilitated by ApoE expression, which was not due to an increase in the primary cleavage of Alcα. This difference may result from binding of ApoE to membrane proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2015.07.017 | DOI Listing |
Infect Immun
January 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Chemical and Biological Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation.
View Article and Find Full Text PDFThe Golgi apparatus is a critical organelle responsible for intracellular trafficking and signaling, orchestrating essential processes such as protein and lipid sorting . Dysregulation of its function has been implicated in various pathologies, including obesity, diabetes, and cancer, highlighting its importance as a potential therapeutic target. Despite this, the development of tools to selectively target the Golgi in specific cell types remain a significant unmet challenge in imaging and drug discovery.
View Article and Find Full Text PDFIn p53-deficient cancers, targeting cholesterol metabolism has emerged as a promising therapeutic approach, given that p53 loss dysregulates sterol regulatory element-binding protein 2 (SREBP-2) pathways, thereby enhancing cholesterol biosynthesis. While cholesterol synthesis inhibitors such as statins have shown initial success, their efficacy is often compromised by the development of acquired resistance. Consequently, new strategies are being explored to disrupt cholesterol homeostasis more comprehensively by inhibiting its synthesis and intracellular transport.
View Article and Find Full Text PDFVISTA is a key immune checkpoint receptor under investigation for cancer immunotherapy; however, its signaling mechanisms remain unclear. Here we identify a conserved four amino acid (NPGF) intracellular motif in VISTA that suppresses cell proliferation by constraining cell-intrinsic growth receptor signaling. The NPGF motif binds to the adapter protein NUMB and recruits Rab11 endosomal recycling machinery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!