Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars.

Food Chem

College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China. Electronic address:

Published: January 2016

Broccoli sprouts are natural functional foods for cancer prevention because of their high glucosinolate (GSL) content and high selenium (Se) accumulation capacity. The regulation mechanism of Se on GSL metabolism in broccoli sprouts was explored. In particular, the effects of Se treatment (100 μmol/L selenite and selenate) on the Se, sulfur (S), glucosinolate and sulforaphane contents; myrosinase activity and health-promoting compounds (ascorbic acid, anthocyanin, total phenolics and flavonoids) of three, 5 day old, cultivars were investigated. The treatment did not influence the total GSL and ascorbic acid contents; significantly increased the myrosinase activity and sulforaphane, anthocyanin and flavonoids contents; and decreased the total phenolics content. The increase in sulforaphane during early growth can be primarily attributed to the increased myrosinase activity caused by Se treatment. Broccoli sprouts with suitable selenite and selenate concentrations, in the early growth days, could be desirable for improved human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2015.05.098DOI Listing

Publication Analysis

Top Keywords

broccoli sprouts
16
myrosinase activity
12
health-promoting compounds
8
selenite selenate
8
ascorbic acid
8
total phenolics
8
increased myrosinase
8
early growth
8
treatment
4
treatment glucosinolate
4

Similar Publications

Drought and flood (water stress) alter plant metabolism, impacting the phytochemical content and biological effects. Using spectrophotometric, HPLC, and electrophoretic methods, we analyze the effects of water stress on broccoli ( L. convar.

View Article and Find Full Text PDF

Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.

View Article and Find Full Text PDF

Introduction: In 2022-2023, examinations were carried out for the presence of a pathogenic bacterium in ready-to-eat (RTE) vegetable products (sprouts and vegetable mixtures and salads) sold for immediate consumption in retail shops located in Lublin, eastern Poland. The identification of strains were performed according to the Polish Standard and accomplished with the Microgen Listeria-ID System.

Results: A high prevalence of infections was found in the unprocessed sprouts of plants belonging to the cabbage (Brassicaceae) family - kale (30.

View Article and Find Full Text PDF

Background: The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045).

View Article and Find Full Text PDF

possesses a significant concentration of bioactive compounds and has been demonstrated to have a variety of pharmacological properties, although its sprout has not been extensively studied. Thus, the protective effects of sprout hydroalcoholic extract (BNSE) on lipid homeostasis, hepatotoxicity, and nephrotoxicity in cyclophosphamide (CYP)-induced toxicity in rats were examined in this study. Four experimental rat groups ( = 8 for each group) were examined as follows: NR, normal rats that received normal saline by oral gavage daily; CYP, injected with a single dose of CYP at 250 mg kg intraperitoneally (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!