A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CdSe quantum dots and N719-dye decorated hierarchical TiO2 nanorods for the construction of efficient co-sensitized solar cells. | LitMetric

CdSe quantum dots and N719-dye decorated hierarchical TiO2 nanorods for the construction of efficient co-sensitized solar cells.

Chemphyschem

Centre of Excellence in Advanced Materials and Green Technologies, Department of Chemical Engineering and Materials Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 641112 (India).

Published: August 2015

Three-dimensional hierarchical TiO2 nanorods (HTNs) decorated with the N719 dye and 3-mercaptopropionic or oleic acid capped CdSe quantum dots (QDs) in photoanodes for the construction of TiO2 nanorod-based efficient co-sensitized solar cells are reported. These HTN co-sensitized solar cells showed a maximum power-conversion efficiency of 3.93 %, and a higher open-circuit voltage and fill factor for the photoanode with 3-mercaptopropionic acid capped CdSe QDs due to the strong electronic interactions between CdSe QDs, N719 dye and HTNs, and the superior light-harvesting features of the HTNs. An electrochemical impedance analysis indicated that the superior charge-collection efficiency and electron diffusion length of the CdSe QD-coated HTNs improved the photovoltaic performance of these HTN co-sensitized solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201500440DOI Listing

Publication Analysis

Top Keywords

co-sensitized solar
16
solar cells
16
cdse quantum
8
quantum dots
8
hierarchical tio2
8
tio2 nanorods
8
efficient co-sensitized
8
n719 dye
8
acid capped
8
capped cdse
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!